Rigid toric matrix Schubert varieties

被引:1
作者
Portakal, Irem [1 ]
机构
[1] Tech Univ Munich, Dept Math, Munich, Germany
关键词
Matrix Schubert variety; Toric variety; Bipartite graph; Rothe diagram; Deformation; GEOMETRY;
D O I
10.1007/s10801-023-01229-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fulton proves that the matrix Schubert variety (X-pi) over bar congruent to Y-pi x C-q can be defined via certain rank conditions encoded in the Rothe diagram of pi is an element of S-N. In the case where Y-pi := TV(sigma(pi)) is toric (with respect to a (C*)(2N-1) action), we show that it can be described as a toric (edge) ideal of a bipartite graph G(pi). We characterize the lower dimensional faces of the associated so-called edge cone sigma(pi) explicitly in terms of subgraphs of G(pi) and present a combinatorial study for the first-order deformations of Y-pi. We prove that Y-pi is rigid if and only if the three-dimensional faces of sigma(pi) are all simplicial. Moreover, we reformulate this result in terms of the Rothe diagram of pi.
引用
收藏
页码:1265 / 1283
页数:19
相关论文
共 50 条
  • [1] Rigid toric matrix Schubert varieties
    Irem Portakal
    [J]. Journal of Algebraic Combinatorics, 2023, 57 : 1265 - 1283
  • [2] Toric degenerations of Schubert varieties
    Caldero P.
    [J]. Transformation Groups, 2002, 7 (1) : 51 - 60
  • [3] Diagonal degenerations of matrix Schubert varieties
    Klein, Patricia
    [J]. ALGEBRAIC COMBINATORICS, 2023, 6 (04): : 1073 - 1094
  • [4] Combinatorics of semi-toric degenerations of Schubert varieties in type C
    Fujita, Naoki
    Nishiyama, Yuta
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (04)
  • [5] Castelnuovo-Mumford regularity of matrix Schubert varieties
    Pechenik, Oliver
    Speyer, David E.
    Weigandt, Anna
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (04):
  • [6] Matrix Schubert varieties and Gaussian conditional independence models
    Fink, Alex
    Rajchgot, Jenna
    Sullivant, Seth
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 44 (04) : 1009 - 1046
  • [7] ON SCHUBERT VARIETIES
    Karuppuchamy, Paramasamy
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (04) : 1365 - 1368
  • [9] On rigidity of toric varieties arising from bipartite graphs
    Portakal, Irem
    [J]. JOURNAL OF ALGEBRA, 2021, 569 : 784 - 822
  • [10] Interpolation of toric varieties
    Dickenstein, Alicia
    Di Rocco, Sandra
    Piene, Ragni
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2024, 30 : 1498 - 1516