Merged bound states in the continuum for giant superchiral field and chiral mode splitting

被引:33
作者
Barkaoui, Hamdi [1 ]
Du, Kang [1 ]
Chen, Yimu [1 ]
Xiao, Shumin [1 ,2 ,3 ]
Song, Qinghai [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Micronano Optoelect Informat Syst, Shenzhen 518055, Peoples R China
[2] Pengcheng Lab, Shenzhen 518055, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
DICHROISM; RESONANCES; LIGHT;
D O I
10.1103/PhysRevB.107.045305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Enhanced circular dichroism (CD) signal is crucial for ultrasensitive detection of chiral species. This purpose strongly relies on the construction of superchiral field in achiral resonant nanostructures. Despite the progress, the research on superchiral fields and their related physics is fundamentally restricted. Here, we demonstrate an approach to construct superchiral field in achiral metasurfaces and explore its impact on chiral mode interaction. While the chiral field at individual bound states in the continuum (BIC) is small, all criteria for giant superchiral fields can be satisfied when two BICs with orthogonal polarizations are merged. Consequently, the typical photonic crystal slabs can produce superchiral fields with enhancement factors (C/CCPL) (where CPL is circular polarized light) orders of magnitude higher than state of the art in nanostructures. More interestingly, a type of chiral light-matter interaction has been revealed by introducing chiral active materials. The nearly orthogonal BICs couple one another at the merging point and result in chiral mode splitting.
引用
收藏
页数:7
相关论文
共 49 条
[1]  
Amabilino D.B., 2009, Chirality at the nanoscale: nanoparticles, surfaces, materials and more
[2]   Circular dichroism mode splitting and bounds to its enhancement with cavity-plasmon-polaritons [J].
Baranov, Denis G. ;
Munkhbat, Battulga ;
Lank, Nils Odebo ;
Verre, Ruggero ;
Kall, Mikael ;
Shegai, Timur .
NANOPHOTONICS, 2020, 9 (02) :283-293
[3]   Bound states in the continuum of higher-order topological insulators [J].
Benalcazar, Wladimir A. ;
Cerjan, Alexander .
PHYSICAL REVIEW B, 2020, 101 (16)
[4]   Quasi-BIC Resonant Enhancement of Second-Harmonic Generation in WS2 Monolayers [J].
Bernhardt, Nils ;
Koshelev, Kirill ;
White, Simon J. U. ;
Meng, Kelvin Wong Choon ;
Froch, Johannes E. ;
Kim, Sejeong ;
Toan Trong Tran ;
Choi, Duk-Yong ;
Kivshar, Yuri ;
Solntsev, Alexander S. .
NANO LETTERS, 2020, 20 (07) :5309-5314
[5]   Self-Isolated Raman Lasing with a Chiral Dielectric Metasurface [J].
Dixon, Jefferson ;
Lawrence, Mark ;
Barton, David R., III ;
Dionne, Jennifer .
PHYSICAL REVIEW LETTERS, 2021, 126 (12)
[6]   Metasurfaces with Maximum Chirality Empowered by Bound States in the Continuum [J].
Gorkunov, Maxim, V ;
Antonov, Alexander A. ;
Kivshar, Yuri S. .
PHYSICAL REVIEW LETTERS, 2020, 125 (09)
[7]   Chiral Electromagnetic Fields Generated by Arrays of Nanoslits [J].
Hendry, E. ;
Mikhaylovskiy, R. V. ;
Barron, L. D. ;
Kadodwala, M. ;
Davis, T. J. .
NANO LETTERS, 2012, 12 (07) :3640-3644
[8]   Bound states in the continuum [J].
Hsu, Chia Wei ;
Zhen, Bo ;
Stone, A. Douglas ;
Joannopoulos, John D. ;
Soljacic, Marin .
NATURE REVIEWS MATERIALS, 2016, 1 (09)
[9]   Observation of trapped light within the radiation continuum [J].
Hsu, Chia Wei ;
Zhen, Bo ;
Lee, Jeongwon ;
Chua, Song-Liang ;
Johnson, Steven G. ;
Joannopoulos, John D. ;
Soljacic, Marin .
NATURE, 2013, 499 (7457) :188-191
[10]   Ultrafast control of vortex microlasers [J].
Huang, Can ;
Zhang, Chen ;
Xiao, Shumin ;
Wang, Yuhan ;
Fan, Yubin ;
Liu, Yilin ;
Zhang, Nan ;
Qu, Geyang ;
Ji, Hongjun ;
Han, Jiecai ;
Ge, Li ;
Kivshar, Yuri ;
Song, Qinghai .
SCIENCE, 2020, 367 (6481) :1018-+