The circumradius of planar reduced convex bodies

被引:0
作者
Chen, Qiuyue [1 ]
Chen, Bing [1 ]
Jin, Hailin [1 ]
机构
[1] Suzhou Univ Sci & Technol, Dept Math, Suzhou 215009, Peoples R China
关键词
Reduced convex body; Reduced convex polygon; Reuleaux polygon; Circumradius;
D O I
10.1007/s00022-023-00667-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the circumradius of reduced convex polygons and Reuleaux polygons. We prove that from amongst all reduced convex n-gons of a fixed thickness, only the regular n-gon has the minimal circumradius. For Reuleaux polygons, we show that from amongst all n-th Reuleaux polygons, only the regular n-th Reuleaux polygon has the minimal circumradius.
引用
收藏
页数:7
相关论文
共 15 条
  • [1] ON REDUCED CONVEX-BODIES
    DEKSTER, BV
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1986, 56 (02) : 247 - 256
  • [2] Dekster BV., 1986, J GEOM, V26, P77, DOI [10.1007/BF01221008, DOI 10.1007/BF01221008]
  • [3] EXTREMAL CONVEX-SETS
    GROEMER, H
    [J]. MONATSHEFTE FUR MATHEMATIK, 1983, 96 (01): : 29 - 39
  • [4] Grunbaum B., 1963, P S PURE MATH, V7, P233
  • [5] On a measure of asymmetry for Reuleaux polygons
    Guo Q.
    Jin H.L.
    [J]. Journal of Geometry, 2011, 102 (1-2) : 73 - 79
  • [6] Heil E., 1978, PREPRINT
  • [7] A note on the extremal bodies of constant width for the Minkowski measure
    Jin, Hailin
    Guo, Qi
    [J]. GEOMETRIAE DEDICATA, 2013, 164 (01) : 227 - 229
  • [8] Asymmetry of Convex Bodies of Constant Width
    Jin, HaiLin
    Guo, Qi
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (02) : 415 - 423
  • [9] Jung H., 1901, J REINE ANGEW MATH, V123, P241
  • [10] Lassak M, 2005, PUBL MATH-DEBRECEN, V67, P349