Two-dimensional Janus Si dichalcogenides: a first-principles study

被引:9
作者
Guo, San-Dong [1 ]
Feng, Xu-Kun [2 ]
Zhu, Yu-Tong [1 ]
Wang, Guangzhao [3 ]
Yang, Shengyuan A. [2 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Elect Engn, Xian 710121, Peoples R China
[2] Singapore Univ Technol & Design, Res Lab Quantum Mat, Singapore 487372, Singapore
[3] Yangtze Normal Univ, Sch Elect Informat Engn, Key Lab Extraordinary Bond Engn & Adv Mat Technol, Chongqing 408100, Peoples R China
关键词
MONOLAYER;
D O I
10.1039/d2cp04536b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Strong structural asymmetry is actively explored in two-dimensional (2D) materials, because it can give rise to many interesting physical properties. Motivated by the recent synthesis of monolayer Si2Te2, we explored a family of 2D materials, named Janus Si dichalcogenides (JSD), which parallel the Janus transition metal dichalcogenides and exhibit even stronger inversion asymmetry. Using first-principles calculations, we show that their strong structural asymmetry leads to a pronounced intrinsic polar field, sizable spin splitting, and large piezoelectric response. The spin splitting involves an out-of-plane spin component, which is beyond the linear Rashba model. The piezoelectric tensor has a large value in both in-plane d(11) coefficient and out-of-plane d(31) coefficient, making monolayer JSDs distinct among existing 2D piezoelectric materials. In addition, we find interesting strain-induced phase transitions in these materials. Particularly, there are multiple valleys that compete for the conduction band minimum, which will lead to notable changes in the optical and transport properties under strain. Our work reveals a new family of Si based 2D materials, which could find promising applications in spintronic and piezoelectric devices.
引用
收藏
页码:2274 / 2281
页数:8
相关论文
共 55 条
  • [1] Graphene and two-dimensional materials for silicon technology
    Akinwande, Deji
    Huyghebaert, Cedric
    Wang, Ching-Hua
    Serna, Martha I.
    Goossens, Stijn
    Li, Lain-Jong
    Wong, H. -S. Philip
    Koppens, Frank H. L.
    [J]. NATURE, 2019, 573 (7775) : 507 - 518
  • [2] Mechanical properties of graphene and boronitrene
    Andrew, R. C.
    Mapasha, R. E.
    Ukpong, A. M.
    Chetty, N.
    [J]. PHYSICAL REVIEW B, 2012, 85 (12)
  • [3] A QUANTUM-THEORY OF MOLECULAR-STRUCTURE AND ITS APPLICATIONS
    BADER, RFW
    [J]. CHEMICAL REVIEWS, 1991, 91 (05) : 893 - 928
  • [4] Strain induced valley degeneracy: a route to the enhancement of thermoelectric properties of monolayer WS2
    Bera, Jayanta
    Sahu, Satyajit
    [J]. RSC ADVANCES, 2019, 9 (43) : 25216 - 25224
  • [5] Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials
    Blonsky, Michael N.
    Zhuang, Houlong L.
    Singh, Arunima K.
    Hennig, Richard G.
    [J]. ACS NANO, 2015, 9 (10) : 9885 - 9891
  • [6] BYCHKOV YA, 1984, JETP LETT+, V39, P78
  • [7] Physically founded phonon dispersions of few-layer materials and the case of borophene
    Carrete, Jesus
    Li, Wu
    Lindsay, Lucas
    Broido, David A.
    Gallego, Luis J.
    Mingo, Natalio
    [J]. MATERIALS RESEARCH LETTERS, 2016, 4 (04): : 204 - 211
  • [8] Symmetry-breaking induced large piezoelectricity in Janus tellurene materials
    Chen, Yu
    Liu, Junyi
    Yu, Jiabing
    Guo, Yaguang
    Sun, Qiang
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (03) : 1207 - 1216
  • [9] Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers
    Cheng, Y. C.
    Zhu, Z. Y.
    Tahir, M.
    Schwingenschloegl, U.
    [J]. EPL, 2013, 102 (05)
  • [10] Characteristics and performance of two-dimensional materials for electrocatalysis
    Chia, Xinyi
    Pumera, Martin
    [J]. NATURE CATALYSIS, 2018, 1 (12): : 909 - 921