Subspace multi-regularized non-negative matrix factorization for hyperspectral unmixing

被引:4
|
作者
Li, Songtao [1 ]
Li, Weigang [1 ]
Cai, Lian [2 ]
Li, Yang [1 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, 947 Heping Rd, Wuhan 430081, Peoples R China
[2] Hunan Univ, Sch Econ & Business, 109 Shijiachong Rd, Changsha 410079, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral unmixing; Nonnegative matrix factorization; Multi regularized; Subspace structure; TENSOR FACTORIZATION; SPARSE NMF; MODEL; CLASSIFICATION; REPRESENTATION;
D O I
10.1007/s10489-022-04121-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral unmixing (HU) is an important task in hyperspectral image (HSI) processing, which estimates endmembers and their corresponding abundances. Generally, the unmixing process of HSI can be approximated by a linear mixing model. Since each type of material only appears in a few pixels in HSI, sparse non-negative matrix factorization (NMF) and its extensions are regarded as the main unmixing methods. However, due to the lack of consideration of the spatial distribution in the local domain, most HU methods lose the inducing effect of spatial correlation in the decomposition process, and ignore the correlation of the real distribution of different materials in different images. In this paper, a novel NMF unmixing model is proposed, called SMRNMF, which learns multiple subspace structures from the original hyperspectral images and combines them into a sparse NMF framework to improve the performance of the model. Firstly, subspace clustering is embedded into the sparse NMF model. According to the spatial correlation of the original data, two similarity matrices are learned, which make full use of the local correlations between the pixels of the original data. Secondly, based on the self-expression characteristics of the data in the subspace, the global similarity pixel graph matrix is embedded into the model to construct a self-expression regularizer to improve the unmixing performance. Finally, a smoothing matrix is cleverly constructed and embedded in the model to overcome the adverse effects of noisy information in the abundance images. Experiments on several simulated and real HSI data sets show that our method has superior performance compared with the existing methods.
引用
收藏
页码:12541 / 12563
页数:23
相关论文
共 50 条
  • [1] Subspace multi-regularized non-negative matrix factorization for hyperspectral unmixing
    Songtao Li
    Weigang Li
    Lian Cai
    Yang Li
    Applied Intelligence, 2023, 53 : 12541 - 12563
  • [2] Homogeneous region regularized multilayer non-negative matrix factorization for hyperspectral unmixing
    Tong, Lei
    Qian, Bin
    Yu, Jing
    Xiao, Chuangbai
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (04):
  • [3] SUBSPACE VERTEX PURSUIT FOR SEPARABLE NON-NEGATIVE MATRIX FACTORIZATION IN HYPERSPECTRAL UNMIXING
    Qu, Qing
    Sun, Xiaoxia
    Nasrabadi, Nasser M.
    Tran, Trac D.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [4] Spectral and spatial total-variation-regularized multilayer non-negative matrix factorization for hyperspectral unmixing
    Tong, Lei
    Qian, Bin
    Yu, Jing
    Xiao, Chuangbai
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (03):
  • [5] Improvements in sparse non-negative matrix factorization for hyperspectral unmixing algorithms
    Zhang, Zuoyu
    Liao, Shouyi
    Zhang, Hexin
    Wang, Shicheng
    Hua, Chao
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (04):
  • [6] Subspace Structure Regularized Nonnegative Matrix Factorization for Hyperspectral Unmixing
    Zhou, Lei
    Zhang, Xueni
    Wang, Jianbo
    Bai, Xiao
    Tong, Lei
    Zhang, Liang
    Zhou, Jun
    Hancock, Edwin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 4257 - 4270
  • [7] Non-Negative Matrix Factorization Based on Smoothing and Sparse Constraints for Hyperspectral Unmixing
    Jia, Xiangxiang
    Guo, Baofeng
    SENSORS, 2022, 22 (14)
  • [8] A NON-NEGATIVE MATRIX FACTORIZATION APPROACH FOR HYPERSPECTRAL UNMIXING WITH PARTIAL KNOWN ENDMEMBERS
    Wang, Nan
    Zhang, Lifu
    Cen, Yi
    Tong, Qingxi
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [9] Unmixing Hyperspectral Skin Data using Non-Negative Matrix Factorization
    Mehmood, Asif
    Clark, Jeffrey
    Sakla, Wesam
    ACTIVE AND PASSIVE SIGNATURES IV, 2013, 8734
  • [10] Nonlinear hyperspectral unmixing based on sparse non-negative matrix factorization
    Li, Jing
    Li, Xiaorun
    Zhao, Liaoying
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10