Approximation of fixed points of enriched asymptotically nonexpansive mappings in CAT(0) spaces

被引:5
作者
Abbas, Mujahid [1 ]
Anjum, Rizwan [2 ]
Ismail, Nimra [3 ]
机构
[1] Govt Coll Univ, Dept Math, Lahore, Pakistan
[2] Riphah Int Univ, Riphah Inst Comp & Appl Sci, Dept Math, Lahore, Pakistan
[3] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore 54600, Pakistan
关键词
Fixed point; Enriched nonexpansive; CAT(0) space; B Karsnoselskij iteration; CONVERGENCE THEOREMS;
D O I
10.1007/s12215-022-00806-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new iteration process involving enriched asymptotically nonexpansive mapping is defined in the setting of CAT(0) spaces. Strong and Delta convergence results via the newly defined iteration process are obtained. The rate of convergence of the new iteration process with Karsnoselskij iteration is compared with the help of a numerical experiment.
引用
收藏
页码:2409 / 2427
页数:19
相关论文
共 27 条
  • [1] Equivalence of Certain Iteration Processes Obtained by Two New Classes of Operators
    Abbas, Mujahid
    Anjum, Rizwan
    Berinde, Vasile
    [J]. MATHEMATICS, 2021, 9 (18)
  • [2] Enriched Multivalued Contractions with Applications to Differential Inclusions and Dynamic Programming
    Abbas, Mujahid
    Anjum, Rizwan
    Berinde, Vasile
    [J]. SYMMETRY-BASEL, 2021, 13 (08):
  • [3] Common Fixed Point Theorem for Modified Kannan Enriched Contraction Pair in Banach Spaces and Its Applications
    Anjum, Rizwan
    Abbas, Mujahid
    [J]. FILOMAT, 2021, 35 (08) : 2485 - 2495
  • [4] Fixed point property of a nonempty set relative to the class of friendly mappings
    Anjum, Rizwan
    Abbas, Mujahid
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [5] Baillon J. B., 1978, Houston Journal of Mathematics, V4, P1
  • [6] Berinde V, 2007, LECT NOTES MATH, V1912, P1
  • [7] A Modified Krasnosel'skii-Mann Iterative Algorithm for Approximating Fixed Points of Enriched Nonexpansive Mappings
    Berinde, Vasile
    [J]. SYMMETRY-BASEL, 2022, 14 (01):
  • [8] Berinde V, 2019, CARPATHIAN J MATH, V35, P293
  • [9] Bridson M. R., 1999, METRIC SPACES NONPOS, Vvol. 319, DOI [DOI 10.1007/978-3-662-12494-9, 10.1007/978-3-662-12494-9]
  • [10] Burago D., 2001, GRADUATE STUDIES MAT