Baicalin alleviates oxygen-glucose deprivation/reoxygenation-induced SK-N-SH cell injury via the regulation of miR-556-3p/ACSL4 pathway

被引:0
|
作者
Dai, Weiwei [1 ]
Yue, Chunjing [1 ]
Zhang, Xiancai [2 ]
Jia, Yalian [3 ]
Han, Zongqi [1 ]
Du, Jingxia [1 ]
Song, Xiaohua [1 ,4 ]
机构
[1] Xingtai Med Coll, Dept Pharmacol, Xingtai, Hebei, Peoples R China
[2] Xingtai Med Coll, Dept Anat, Xingtai, Hebei, Peoples R China
[3] Xingtai Med Coll, Dept Clin, Xingtai, Hebei, Peoples R China
[4] Xingtai Med Coll, Dept Pharmacol, 618 Iron & Steel North Rd, Xingtai, Hebei, Peoples R China
关键词
ACSL4; baicalin; ischemic stroke; miR-556-3p; OGD/R; CEREBRAL-ISCHEMIA; APOPTOSIS; INFLAMMATION; STROKE; ACSL4;
D O I
10.1111/cbdd.14455
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Baicalin (BCL) has been found to have neuroprotective effects in ischemic stroke (IS), but its underlying molecular mechanisms are unknown. SK-N-SH cells were treated with BCL and then induced by oxygen-glucose deprivation/reoxygenation (OGD/R). Cell proliferation, apoptosis, inflammation, and ferroptosis were detected. Protein levels were examined by western blot. The expression levels of microRNA (miR)-556-3p and ACSL4 were tested via quantitative real-time PCR. MiR-556-3p and Acyl-CoA synthetase long-chain family member 4 (ACSL4) interaction was confirmed via dual-luciferase reporter assay and RNA pull-down assay. Middle cerebral artery occlusion (MCAO) mice model was constructed to assess the role of BCL on brain injury in vivo. Our study showed that BCL treatment alleviated OGD/R-induced SK-N-SH cell apoptosis, inflammation and ferroptosis. MiR-556-3p was decreased in OGD/R-induced SK-N-SH cells, and BCL treatment enhanced its expression. MiR-556-3p could target ACSL4, and its overexpression relieved OGD/R-induced SK-N-SH cell injury by targeting ACSL4. Besides, miR-556-3p inhibitor or ACSL4 overexpression reversed the inhibitory effect of BCL on OGD/R-induced SK-N-SH cell injury. In vivo, BCL alleviated brain injury in MCAO mice through miR-556-3p/ACSL4 axis. In conclusion, BCL alleviated OGD/R-induced SK-N-SH cell injury and relieved brain injury in MCAO mice by regulating miR-556-3p/ACSL4 axis.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Upregulation of miR-376c-3p alleviates oxygen-glucose deprivation-induced cell injury by targeting ING5
    Zhang, Heng
    Zhou, Jie
    Zhang, Mingxia
    Yi, Yanjie
    He, Bing
    CELLULAR & MOLECULAR BIOLOGY LETTERS, 2019, 24 (01)
  • [32] MiR-142-3p Attenuates Oxygen Glucose Deprivation/Reoxygenation-Induced Injury by Targeting FBXO3 in Human Neuroblastoma SH-SY5Y Cells
    Li, Jin
    Ma, Lishan
    WORLD NEUROSURGERY, 2020, 136 : E149 - E157
  • [33] 3-Mercaptopyruvate sulfurtransferase/hydrogen sulfide protects cerebral endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury via mitoprotection and inhibition of the RhoA/ROCK pathway
    Zhang, Fang
    Chen, Shuo
    Wen, Ji-Yue
    Chen, Zhi-Wu
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2020, 319 (04): : C720 - C733
  • [34] miR-666-3p Mediates the Protective Effects of Mesenchymal Stem Cell-derived Exosomes Against Oxygen-glucose Deprivation and Reoxygenation-induced Cell Injury in Brain Microvascular Endothelial Cells via Mitogen-activated Protein Kinase Pathway
    Kong, Li-yun
    Li, Yan
    Rao, Ding-yu
    Wu, Bing
    Sang, Cheng-peng
    Lai, Ping
    Ye, Jun-song
    Zhang, Zu-xiong
    Du, Zhi-ming
    Yu, Jun-jian
    Gu, Liang
    Xie, Fa-chun
    Liu, Zi-you
    Tang, Zhi-xian
    CURRENT NEUROVASCULAR RESEARCH, 2021, 18 (01) : 20 - 77
  • [35] Dexmedetomidine protects against oxygen-glucose deprivation/reoxygenation injury-induced apoptosis via the p38 MAPK/ERK signalling pathway
    Wang, Ke
    Zhu, Yuekun
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2018, 46 (02) : 675 - 686
  • [36] Microglial and Neuronal Cell Pyroptosis Induced by Oxygen-Glucose Deprivation/Reoxygenation Aggravates Cell Injury via Activation of the Caspase-1/GSDMD Signaling Pathway
    Dong, Zhaofei
    Peng, Qingxia
    Pan, Kuang
    Lin, Weijye
    Wang, Yidong
    NEUROCHEMICAL RESEARCH, 2023, 48 (09) : 2660 - 2673
  • [37] Down-regulation of microRNA-142-5p attenuates oxygen-glucose deprivation and reoxygenation-induced neuron injury through up-regulating Nrf2/ARE signaling pathway
    Wang, Ning
    Zhang, Lingmin
    Lu, Yang
    Zhang, Mingxin
    Zhang, Zhenni
    Wang, Kui
    Lv, Jianrui
    BIOMEDICINE & PHARMACOTHERAPY, 2017, 89 : 1187 - 1195
  • [38] Paraoxonase 2 protects against oxygen-glucose deprivation/reoxygenation-induced neuronal injury by enhancing Nrf2 activation via GSK-3β modulation
    Bai, J.
    Jia, P.
    Zhang, Y.
    Wang, K.
    Wu, G.
    HUMAN & EXPERIMENTAL TOXICOLOGY, 2021, 40 (08) : 1342 - 1354
  • [39] Long noncoding RNA HOTTIP alleviates oxygen-glucose deprivation-induced neuronal injury via modulating miR-143/hexokinase 2 pathway
    Wang, Yan
    Li, Guoce
    Zhao, Li
    Lv, Jianping
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2018, 119 (12) : 10107 - 10117
  • [40] Circ_0006768 upregulation attenuates oxygen-glucose deprivation/reoxygenation-induced human brain microvascular endothelial cell injuries by upregulating VEZF1 via miR-222-3p inhibition
    Li, Jing
    Wang, Jiguang
    Wang, Zhi
    METABOLIC BRAIN DISEASE, 2021, 36 (08) : 2521 - 2534