Baicalin alleviates oxygen-glucose deprivation/reoxygenation-induced SK-N-SH cell injury via the regulation of miR-556-3p/ACSL4 pathway

被引:0
|
作者
Dai, Weiwei [1 ]
Yue, Chunjing [1 ]
Zhang, Xiancai [2 ]
Jia, Yalian [3 ]
Han, Zongqi [1 ]
Du, Jingxia [1 ]
Song, Xiaohua [1 ,4 ]
机构
[1] Xingtai Med Coll, Dept Pharmacol, Xingtai, Hebei, Peoples R China
[2] Xingtai Med Coll, Dept Anat, Xingtai, Hebei, Peoples R China
[3] Xingtai Med Coll, Dept Clin, Xingtai, Hebei, Peoples R China
[4] Xingtai Med Coll, Dept Pharmacol, 618 Iron & Steel North Rd, Xingtai, Hebei, Peoples R China
关键词
ACSL4; baicalin; ischemic stroke; miR-556-3p; OGD/R; CEREBRAL-ISCHEMIA; APOPTOSIS; INFLAMMATION; STROKE; ACSL4;
D O I
10.1111/cbdd.14455
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Baicalin (BCL) has been found to have neuroprotective effects in ischemic stroke (IS), but its underlying molecular mechanisms are unknown. SK-N-SH cells were treated with BCL and then induced by oxygen-glucose deprivation/reoxygenation (OGD/R). Cell proliferation, apoptosis, inflammation, and ferroptosis were detected. Protein levels were examined by western blot. The expression levels of microRNA (miR)-556-3p and ACSL4 were tested via quantitative real-time PCR. MiR-556-3p and Acyl-CoA synthetase long-chain family member 4 (ACSL4) interaction was confirmed via dual-luciferase reporter assay and RNA pull-down assay. Middle cerebral artery occlusion (MCAO) mice model was constructed to assess the role of BCL on brain injury in vivo. Our study showed that BCL treatment alleviated OGD/R-induced SK-N-SH cell apoptosis, inflammation and ferroptosis. MiR-556-3p was decreased in OGD/R-induced SK-N-SH cells, and BCL treatment enhanced its expression. MiR-556-3p could target ACSL4, and its overexpression relieved OGD/R-induced SK-N-SH cell injury by targeting ACSL4. Besides, miR-556-3p inhibitor or ACSL4 overexpression reversed the inhibitory effect of BCL on OGD/R-induced SK-N-SH cell injury. In vivo, BCL alleviated brain injury in MCAO mice through miR-556-3p/ACSL4 axis. In conclusion, BCL alleviated OGD/R-induced SK-N-SH cell injury and relieved brain injury in MCAO mice by regulating miR-556-3p/ACSL4 axis.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Circ_0001360 absence alleviates oxygen-glucose deprivation/reoxygenation-induced SK-N-SH cell injury via controlling the miR-671-5p/BMF pathway
    Lu, Fang
    Mo, Linhong
    Liu, Aixian
    INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2024, 134 (05) : 492 - 502
  • [2] Circ_0059662 exerts a positive role in oxygen-glucose deprivation/reoxygenation-induced SK-N-SH cell injury
    An, Yang
    Xu, Dan
    Yuan, Lei
    Wen, Ying
    EXPERIMENTAL BRAIN RESEARCH, 2023, 241 (11-12) : 2705 - 2714
  • [3] Circ_0059662 exerts a positive role in oxygen–glucose deprivation/reoxygenation-induced SK-N-SH cell injury
    Yang An
    Dan Xu
    Lei Yuan
    Ying Wen
    Experimental Brain Research, 2023, 241 : 2705 - 2714
  • [4] Mechanism of lncRNA SNHG16 in oxidative stress and inflammation in oxygen-glucose deprivation and reoxygenation-induced SK-N-SH cells
    Cao, Xiangyuan
    Ma, Jingjing
    Li, Shaohua
    BIOENGINEERED, 2022, 13 (03) : 5021 - 5034
  • [5] MicroRNA-19a mediates neuroprotection through the PTEN/AKT pathway in SK-N-SH cells after oxygen-glucose deprivation/reoxygenation injury
    Jin, Xiaochun
    Wang, Hui
    Yin, Shuzhou
    Zhang, Youtao
    GENERAL PHYSIOLOGY AND BIOPHYSICS, 2020, 39 (03) : 259 - 268
  • [6] MiR-340-5p alleviates oxygen-glucose deprivation/reoxygenation-induced neuronal injury via PI3K/Akt activation by targeting PDCD4
    Zheng, Yake
    Zhao, Peng
    Lian, Yajun
    Li, Shuang
    Chen, Yuan
    Li, Lihao
    NEUROCHEMISTRY INTERNATIONAL, 2020, 134
  • [7] Petatewalide B alleviates oxygen-glucose deprivation/reoxygenation-induced neuronal injury via activation of the AMPK/Nrf2 signaling pathway
    Park, Sun Young
    Cho, Min Hyun
    Li, Mei
    Li, Ke
    Park, Geuntae
    Choi, Young-Whan
    MOLECULAR MEDICINE REPORTS, 2020, 22 (01) : 239 - 246
  • [8] Aquaporin 4 regulation by ginsenoside Rb1 intervenes with oxygen-glucose deprivation/reoxygenation-induced astrocyte injury
    Li, Ya-Nan
    Gao, Zhong-Wen
    Li, Ran
    Zhang, Yun-Feng
    Zhu, Qing-San
    Huang, Fei
    MEDICINE, 2019, 98 (42) : e17591
  • [9] MIR22HG Aggravates Oxygen-Glucose Deprivation and Reoxygenation-Induced Cardiomyocyte Injury through the miR-9-3p/SH2B3 Axis
    Ge, Yi
    Liu, Lishi
    Luo, Liang
    Fang, Yu
    Ni, Tong
    CARDIOVASCULAR THERAPEUTICS, 2022, 2022
  • [10] Circ_0000647 promotes cell injury by modulating miR-126-5p/TRAF3 axis in oxygen-glucose deprivation and reperfusion-induced SK-N-SH cell model
    Dai, Yuanqiang
    Sheng, Ying
    Deng, Yu
    Wang, Heng
    Zhao, Zhenzhen
    Yu, Xiya
    Xu, Tao
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2022, 104