High-capacity high-Ni low-Co Li-rich layered oxides via adjusting Li2MnO3 content and Li/Ni mixing defects

被引:4
作者
Wu, Zhen [1 ]
Zou, Kunyang [1 ]
Dai, Xin [1 ]
Zhang, Yu-Han [2 ]
Zhang, Xudong [3 ]
Wang, Hao [4 ]
Hou, Zhufeng [5 ]
Ma, Lijing [6 ]
Liu, Yan [1 ]
Chen, Yuanzhen [1 ]
Guo, Shengwu [1 ]
Liu, Yongning [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Chinese Acad Sci, Qingdao Ind Energy Storage Res Inst, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[3] Xi An Jiao Tong Univ, Ctr High Performance Comp, Network Informat Ctr, Xian 710049, Peoples R China
[4] Hefei Adv Comp Ctr Operat Management Corp Ltd, Hefei 230088, Peoples R China
[5] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Peoples R China
[6] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy State Key Lab Multiph, Xian 710049, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
High-Ni low -Co Li -rich layered oxides; Li2MnO3 phase content; Li/Ni disordering; Electric structure; VOLTAGE DECAY; CATHODE MATERIALS; ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; ANIONIC REDOX; STABILITY; MN; SUBSTITUTION; KINETICS;
D O I
10.1016/j.cej.2023.145986
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Li-rich layered oxides (LLOs) have been considered as the promising candidate cathodes for the next high-energy Li-based batteries, but suffer from poor rate capability, lower discharge voltage, and persistent voltage fade. Appropriately increasing the Ni content in LLOs tends to improve rate capability, discharge voltage, and stability. However, the high-Ni LLOs are likely to have inferior O2-/- redox activities, causing lower capacities, typically < 250 mAh/g. Herein, the rationally regulated Li2MnO3 phase content and Li/Ni disordering defects via two-step adjustment of the Ni/Mn and Li/Mn ratios are proposed to obtain a high-capacity high-Ni low-Co LLO Li1.167Ni0.222Mn0.537Co0.074O2 (L2-1). Compared to a typical Li1.2Ni0.13Mn0.54Co0.13O2 (Ls), the as-prepared L2-1 cathode delivers higher reversible capacity (267.2 vs 288.2 mAh/g), higher voltage, and better rate capability. Such an improvement is demonstrated by experiments and theoretical calculations that a suitable Li2MnO3 content (36.6%) and a high Li/Ni disordering (5.93%) for LLOs play a crucial role in the O2-/- redox processes. This work contributes to the design of high-capacity high-Ni LLOs.
引用
收藏
页数:11
相关论文
共 88 条
[1]  
[Anonymous], 2022, ACS Appl. Mater. Interfaces
[2]   Direct Quantification of Anionic Redox over Long Cycling of Li-Rich NMC via Hard X-ray Photoemission Spectroscopy [J].
Assat, Gaurav ;
Iadecola, Antonella ;
Foix, Dominique ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
ACS ENERGY LETTERS, 2018, 3 (11) :2721-2728
[3]   Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries [J].
Assat, Gaurav ;
Tarascon, Jean-Marie .
NATURE ENERGY, 2018, 3 (05) :373-386
[4]   Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes [J].
Assat, Gaurav ;
Foix, Dominique ;
Delacourt, Charles ;
Iadecola, Antonella ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
NATURE COMMUNICATIONS, 2017, 8
[5]   Powder pattern indexing with the dichotomy method [J].
Boultif, A ;
Louër, D .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2004, 37 :724-731
[6]   Achieving Uniform Li Plating/Stripping at Ultrahigh Currents and Capacities by Optimizing 3D Nucleation Sites and Li2Se-Enriched SEI [J].
Cao, Jiaqi ;
Xie, Yonghui ;
Yang, Yang ;
Wang, Xinghui ;
Li, Wangyang ;
Zhang, Qiaoli ;
Ma, Shun ;
Cheng, Shuying ;
Lu, Bingan .
ADVANCED SCIENCE, 2022, 9 (09)
[7]   Surface Spinel-Coated and Polyanion-Doped Co-Free Li-Rich Layered Oxide Cathode for High-Performance Lithium-Ion Batteries [J].
Chang, Zhanying ;
Zhang, Yiming ;
He, Wei ;
Wang, Jin ;
Zheng, Hongfei ;
Qu, Baihua ;
Wang, Xinghui ;
Xie, Qingshui ;
Peng, Dong-Liang .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (22) :7464-7473
[8]   Lithium-rich sulfide/selenide cathodes for next-generation lithium-ion batteries: challenges and perspectives [J].
Chen, Mingzhe ;
Liu, Yunfei ;
Zhang, Yanyan ;
Xing, Guichuan ;
Tang, Yuxin .
CHEMICAL COMMUNICATIONS, 2022, 58 (22) :3591-3600
[9]   Cobalt in high-energy-density layered cathode materials for lithium ion batteries [J].
Chu, Binbin ;
Guo, Yu-Jie ;
Shi, Ji-Lei ;
Yin, Ya-Xia ;
Huang, Tao ;
Su, Hang ;
Yu, Aishui ;
Guo, Yu-Guo ;
Li, Yangxing .
JOURNAL OF POWER SOURCES, 2022, 544
[10]   All-Solid-State Thin-Film Lithium-Sulfur Batteries [J].
Deng, Renming ;
Ke, Bingyuan ;
Xie, Yonghui ;
Cheng, Shoulin ;
Zhang, Congcong ;
Zhang, Hong ;
Lu, Bingan ;
Wang, Xinghui .
NANO-MICRO LETTERS, 2023, 15 (01)