Unsupervised Domain Adaptation for Medical Image Segmentation by Disentanglement Learning and Self-Training

被引:51
作者
Xie, Qingsong [1 ]
Li, Yuexiang [2 ,3 ]
He, Nanjun [3 ]
Ning, Munan [3 ]
Ma, Kai [3 ]
Wang, Guoxing [1 ]
Lian, Yong [1 ]
Zheng, Yefeng [3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Micronano Elect, Shanghai 200240, Peoples R China
[2] Guangxi Med Univ, Med AI Res MARS Grp, Nanning 530021, Peoples R China
[3] Tencent Jarvis Lab, Shenzhen 518000, Peoples R China
关键词
Unsupervised domain adaptation (UDA); pseudo label; segmentation; MODALITY; NETWORK;
D O I
10.1109/TMI.2022.3192303
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Unsupervised domain adaption (UDA), which aims to enhance the segmentation performance of deep models on unlabeled data, has recently drawn much attention. In this paper, we propose a novel UDA method (namely DLaST) for medical image segmentation via disentanglement learning and self-training. Disentanglement learning factorizes an image into domain-invariant anatomy and domain-specific modality components. To make the best of disentanglement learning, we propose a novel shape constraint to boost the adaptation performance. The self-training strategy further adaptively improves the segmentation performance of the model for the target domain through adversarial learning and pseudo label, which implicitly facilitates feature alignment in the anatomy space. Experimental results demonstrate that the proposed method outperforms the state-of-the-art UDA methods for medical image segmentation on three public datasets, i.e., a cardiac dataset, an abdominal dataset and a brain dataset. The code will be released soon.
引用
收藏
页码:4 / 14
页数:11
相关论文
共 61 条
[1]   Domain Intersection and Domain Difference [J].
Benaim, Sagie ;
Khaitov, Michael ;
Galanti, Tomer ;
Wolf, Lior .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3444-3452
[2]   Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks [J].
Bousmalis, Konstantinos ;
Silberman, Nathan ;
Dohan, David ;
Erhan, Dumitru ;
Krishnan, Dilip .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :95-104
[3]   All about Structure: Adapting Structural Information across Domains for Boosting Semantic Segmentation [J].
Chang, Wei-Lun ;
Wang, Hui-Po ;
Peng, Wen-Hsiao ;
Chiu, Wei-Chen .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1900-1909
[4]   Disentangle, Align and Fuse for Multimodal and Semi-Supervised Image Segmentation [J].
Chartsias, Agisilaos ;
Papanastasiou, Giorgos ;
Wang, Chengjia ;
Semple, Scott ;
Newby, David E. ;
Dharmakumar, Rohan ;
Tsaftaris, Sotirios A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (03) :781-792
[5]   Disentangled representation learning in cardiac image analysis [J].
Chartsias, Agisilaos ;
Joyce, Thomas ;
Papanastasiou, Giorgos ;
Semple, Scott ;
Williams, Michelle ;
Newby, David E. ;
Dharmakumar, Rohan ;
Tsaftaris, Sotirios A. .
MEDICAL IMAGE ANALYSIS, 2019, 58
[6]   Factorised Spatial Representation Learning: Application in Semi-supervised Myocardial Segmentation [J].
Chartsias, Agisilaos ;
Joyce, Thomas ;
Papanastasiou, Giorgos ;
Semple, Scott ;
Williams, Michelle ;
Newby, David ;
Dharmakumar, Rohan ;
Tsaftaris, Sotirios A. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :490-498
[7]   Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation [J].
Chen, Chen ;
Ouyang, Cheng ;
Tarroni, Giacomo ;
Schlemper, Jo ;
Qiu, Huaqi ;
Bai, Wenjia ;
Rueckert, Daniel .
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: MULTI-SEQUENCE CMR SEGMENTATION, CRT-EPIGGY AND LV FULL QUANTIFICATION CHALLENGES, 2020, 12009 :209-219
[8]   Unsupervised Bidirectional Cross-Modality Adaptation via Deeply Synergistic Image and Feature Alignment for Medical Image Segmentation [J].
Chen, Cheng ;
Dou, Qi ;
Chen, Hao ;
Qin, Jing ;
Heng, Pheng Ann .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (07) :2494-2505
[9]   Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion [J].
Chen, Cheng ;
Dou, Qi ;
Jin, Yueming ;
Chen, Hao ;
Qin, Jing ;
Pheng-Ann Heng .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 :447-456
[10]  
Chen X, 2016, Arxiv, DOI [arXiv:1606.03657, DOI 10.48550/ARXIV.1606.03657]