Normalized solutions for critical growth Schriodinger equations with nonautonomous perturbation

被引:1
|
作者
Fan, Song [1 ]
Long, Chun-Fei [1 ]
Xu, Qin [1 ]
Li, Gui-Dong [1 ]
机构
[1] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Normalized solutions; Schrodinger equation; Sobolev critical growth; Nonautonomous perturbation; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1016/j.aml.2023.108936
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to investigating the existence of solutions characterized by a predefined L2-norm in the context of the nonlinear Sobolev critical Schrodinger equation{ -Delta(u)+ lambda u = | u|(2)*-2u+ V(x)dudp-2u,in R-N, fRN u2dx = a2, u is an element of H1(RN). Here, N > 3, a > 0 and 2 < p < 2*, where 2*=N2N-2 represents the critical Sobolev exponent. It is worth noting that the parameter A functions as a Lagrange multiplier within this framework.
引用
收藏
页数:6
相关论文
共 50 条