Normalized solutions for critical growth Schriodinger equations with nonautonomous perturbation

被引:1
|
作者
Fan, Song [1 ]
Long, Chun-Fei [1 ]
Xu, Qin [1 ]
Li, Gui-Dong [1 ]
机构
[1] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Normalized solutions; Schrodinger equation; Sobolev critical growth; Nonautonomous perturbation; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1016/j.aml.2023.108936
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to investigating the existence of solutions characterized by a predefined L2-norm in the context of the nonlinear Sobolev critical Schrodinger equation{ -Delta(u)+ lambda u = | u|(2)*-2u+ V(x)dudp-2u,in R-N, fRN u2dx = a2, u is an element of H1(RN). Here, N > 3, a > 0 and 2 < p < 2*, where 2*=N2N-2 represents the critical Sobolev exponent. It is worth noting that the parameter A functions as a Lagrange multiplier within this framework.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Normalized Ground State Solutions for Critical Growth Schrodinger Equations
    Fan, Song
    Li, Gui-Dong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [2] NORMALIZED SOLUTIONS FOR LOWER CRITICAL CHOQUARD EQUATIONS WITH CRITICAL SOBOLEV PERTURBATION
    Yao, Shuai
    Chen, Haibo
    Radulescu, Vicentiu D.
    Sun, Juntao
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3696 - 3723
  • [3] Normalized Solutions for Nonautonomous Schrodinger Equations on a Suitable Manifold
    Chen, Sitong
    Tang, Xianhua
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1637 - 1660
  • [4] Normalized Solutions to the Critical Choquard-type Equations with Weakly Attractive Potential and Nonlocal Perturbation
    Long, Lei
    Li, Fuyi
    Rong, Ting
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):
  • [5] Normalized solutions to the fractional Kirchhoff equations with a perturbation
    Liu, Lintao
    Chen, Haibo
    Yang, Jie
    APPLICABLE ANALYSIS, 2023, 102 (04) : 1229 - 1249
  • [6] Normalized Solutions for a Critical Hartree Equation with Perturbation
    Ye, Weiwei
    Shen, Zifei
    Yang, Minbo
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (09)
  • [7] Normalized Solutions for a Critical Hartree Equation with Perturbation
    Weiwei Ye
    Zifei Shen
    Minbo Yang
    The Journal of Geometric Analysis, 2022, 32
  • [8] Normalized ground state solutions for critical growth Schrödinger equations with Hardy potential
    Fan, Song
    Li, Gui-Dong
    Tang, Chun-Lei
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [9] Normalized Solutions of Nonautonomous Kirchhoff Equations: Sub- and Super-critical Cases
    Chen, Sitong
    Radulescu, Vicentiu D.
    Tang, Xianhua
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (01): : 773 - 806
  • [10] Normalized Ground State Solutions for Critical Growth Schrödinger Equations
    Song Fan
    Gui-Dong Li
    Qualitative Theory of Dynamical Systems, 2024, 23