Mechanism of internal thermal runaway propagation in blade batteries

被引:39
作者
Feng, Xuning [1 ]
Zhang, Fangshu [1 ]
Huang, Wensheng [1 ]
Peng, Yong [1 ]
Xu, Chengshan [1 ]
Ouyang, Minggao [1 ]
机构
[1] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2024年 / 89卷
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Blade battery; Thermal runaway; Internal thermal runaway propagation; LITHIUM-ION BATTERIES; POUCH CELLS; PENETRATION; BEHAVIOR; SAFETY; LIFE;
D O I
10.1016/j.jechem.2023.09.050
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Blade batteries are extensively used in electric vehicles, but unavoidable thermal runaway is an inherent threat to their safe use. This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell. The results showed that the internal thermal runaway could propagate for up to 272 s, which is comparable to that of a traditional battery module. The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s-1, depending on both the electrolyte content and high-temperature gas diffusion. In the early stages of thermal runaway, the electrolyte participated in the reaction, which intensified the thermal runaway and accelerated its propagation. As the battery temperature increased, the electrolyte evaporated, which attenuated the acceleration effect. Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer. The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%. We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%. Finally, the temperature rate curve was analyzed, and a three-stage mechanism for internal thermal runaway propagation was proposed. In Stage I, convective heat transfer from electrolyte evaporation locally increased the temperature to 100 degrees C. In Stage II, solid heat transfer locally increases the temperature to trigger thermal runaway. In Stage III, thermal runaway sharply increases the local temperature. The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design.(c) 2023 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press All rights reserved.
引用
收藏
页码:184 / 194
页数:11
相关论文
共 43 条
[1]  
[Anonymous], NIST CHEM WEBBOOK SR
[2]   Multi-objective optimization design for a double-direction liquid heating system-based Cell-to-Chassis battery module [J].
Chen, Siqi ;
Zhang, Guangxu ;
Wu, Changjun ;
Huang, Wensheng ;
Xu, Chengshan ;
Jin, Changyong ;
Wu, Yu ;
Jiang, Zhao ;
Dai, Haifeng ;
Feng, Xuning ;
Wei, Xuezhe ;
Ouyang, Minggao .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 183
[3]   The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection [J].
Cheng, Xin-Bing ;
Yan, Chong ;
Huang, Jia-Qi ;
Li, Peng ;
Zhu, Lin ;
Zhao, Lida ;
Zhang, Yingying ;
Zhu, Wancheng ;
Yang, Shu-Ting ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2017, 6 :18-25
[4]   Mitigating Thermal Runaway of Lithium-Ion Batteries [J].
Feng, Xuning ;
Ren, Dongsheng ;
He, Xiangming ;
Ouyang, Minggao .
JOULE, 2020, 4 (04) :743-770
[5]   Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database [J].
Feng, Xuning ;
Zheng, Siqi ;
Ren, Dongsheng ;
He, Xiangming ;
Wang, Li ;
Cui, Hao ;
Liu, Xiang ;
Jin, Changyong ;
Zhang, Fangshu ;
Xu, Chengshan ;
Hsu, Hungjen ;
Gao, Shang ;
Chen, Tianyu ;
Li, Yalun ;
Wang, Tianze ;
Wang, Hao ;
Li, Maogang ;
Ouyang, Minggao .
APPLIED ENERGY, 2019, 246 :53-64
[6]   Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module [J].
Feng, Xuning ;
Sun, Jing ;
Ouyang, Minggao ;
Wang, Fang ;
He, Xiangming ;
Lu, Languang ;
Peng, Huei .
JOURNAL OF POWER SOURCES, 2015, 275 :261-273
[7]   Tracking Internal Temperature and Structural Dynamics during Nail Penetration of Lithium-Ion Cells [J].
Finegan, Donal P. ;
Tjaden, Bernhard ;
Heenan, Thomas M. M. ;
Jervis, Rhodri ;
Di Michiel, Marco ;
Rack, Alexander ;
Hinds, Gareth ;
Brett, Dan J. L. ;
Shearing, Paul R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (13) :A3285-A3291
[8]   Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits [J].
Finegan, Donal P. ;
Darcy, Eric ;
Keyser, Matthew ;
Tjaden, Bernhard ;
Heenan, Thomas M. M. ;
Jervis, Rhodri ;
Bailey, Josh J. ;
Malik, Romeo ;
Vo, Nghia T. ;
Magdysyuk, Oxana V. ;
Atwood, Robert ;
Drakopoulos, Michael ;
DiMichiel, Marco ;
Rack, Alexander ;
Hinds, Gareth ;
Brett, Dan J. L. ;
Shearing, Paul R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (06) :1377-1388
[9]   In-operando high-speed tomography of lithium-ion batteries during thermal runaway [J].
Finegan, Donal P. ;
Scheel, Mario ;
Robinson, James B. ;
Tjaden, Bernhard ;
Hunt, Ian ;
Mason, Thomas J. ;
Millichamp, Jason ;
Di Michiel, Marco ;
Offer, Gregory J. ;
Hinds, Gareth ;
Brett, Dan J. L. ;
Shearing, Paul R. .
NATURE COMMUNICATIONS, 2015, 6
[10]   Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes [J].
Golubkov, Andrey W. ;
Fuchs, David ;
Wagner, Julian ;
Wiltsche, Helmar ;
Stangl, Christoph ;
Fauler, Gisela ;
Voitic, Gernot ;
Thaler, Alexander ;
Hacker, Viktor .
RSC ADVANCES, 2014, 4 (07) :3633-3642