Breaking Down Covariate Shift on Pneumothorax Chest X-Ray Classification

被引:1
作者
Bercean, Bogdan [1 ,2 ]
Buburuzan, Alexandru [2 ,3 ]
Birhala, Andreea [2 ]
Avramescu, Cristian [1 ,2 ]
Tenescu, Andrei [1 ,2 ]
Marcu, Marius [1 ]
机构
[1] Politehn Univ Timisoara, Timisoara, Romania
[2] Rayscape, Bucharest, Romania
[3] Univ Manchester, Manchester, England
来源
UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, UNSURE 2023 | 2023年 / 14291卷
关键词
Domain generalization; Chest X-rays; Pneumothorax;
D O I
10.1007/978-3-031-44336-7_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Domain shift poses significant problems to computer-aided diagnostic (CAD) systemswhen deployed in clinical scenarios. There's still no definite fix nor an in-depth understanding of the exact factors driving domain shifts in medical X-rays. Here, we conduct an exploratory study on three covariate shift factors in X-ray classification by controlling for different variables. This is possible by leveraging a homogenously-relabelled mix of public and private X-ray data spanning 23 medical institutions over four continents and 17 classes of pathologies. We show that the acquisition parameter, device manufacturer and geographical shifts degrade out-ofdistribution (OOD) F1 by 6%, 3.2% and 3.3%, respectively. Pneumothorax was found to be themost impaired pathology, suffering a mean F1 generalisation gap of 13.3%, despite being one of themost clinically-consequential radiological findings. To this end, we introduced LISA-topK, a multi-label adaptation of Learning Invariant Predictors with Selective Augmentation (LISA), that we showed to narrow down the OOD gap, surpassing other methods consistently. These pragmatic results shed light on some of the elements of OOD generalisation in X-ray classification, which are essential to researching, understanding and deploying CAD systems. Code is available at https://github.com/RayscapeAI/LISA-topK
引用
收藏
页码:157 / 166
页数:10
相关论文
共 50 条
  • [31] Deep Learning-based Diagnosis and Localization of Pneumothorax on Portable Supine Chest X-ray in Intensive and Emergency Medicine: A Retrospective Study
    Wang, Chih-Hung
    Lin, Tzuching
    Chen, Guanru
    Lee, Meng-Rui
    Tay, Joyce
    Wu, Cheng-Yi
    Wu, Meng-Che
    Roth, Holger R.
    Yang, Dong
    Zhao, Can
    Wang, Weichung
    Huang, Chien-Hua
    JOURNAL OF MEDICAL SYSTEMS, 2023, 48 (01)
  • [32] Automatic Calculation of Cardiometric Coefficients on Chest X-Ray Images
    Kornaev, Alexey
    Lvov, Dmitry
    Pershin, Ilya
    Kiselev, Semen
    Afonchikov, Danil
    Bariev, Iskander
    Ibragimov, Bulat
    IEEE ACCESS, 2025, 13 : 10702 - 10712
  • [33] German CheXpert Chest X-ray Radiology Report Labeler
    Wollek, Alessandro
    Hyska, Sardi
    Sedlmeyr, Thomas
    Haitzer, Philip
    Rueckel, Johannes
    Sabel, Bastian O.
    Ingrisch, Michael
    Lasser, Tobias
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2024, 196 (09): : 956 - 965
  • [34] U-Net Based Chest X-ray Segmentation with Ensemble Classification for Covid-19 and Pneumonia
    Kumarasinghe, K. A. S. H.
    Kolonne, S. L.
    Fernando, K. C. M.
    Meedeniya, D.
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2022, 18 (07) : 161 - 175
  • [35] UniChest: Conquer-and-Divide Pre-Training for Multi-Source Chest X-Ray Classification
    Dai, Tianjie
    Zhang, Ruipeng
    Hong, Feng
    Yao, Jiangchao
    Zhang, Ya
    Wang, Yanfeng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (08) : 2901 - 2912
  • [36] Diagnosing Respiratory Variability: Convolutional Neural Networks for Chest X-ray Classification Across Diverse Pulmonary Conditions
    Kancherla, Rajesh
    Sharma, Anju
    Garg, Prabha
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024,
  • [37] Classification of Pneumonia via a Hybrid ZFNet-Quantum Neural Network Using a Chest X-ray Dataset
    Shahwar, Tayyaba
    Mallek, Fatma
    Rehman, Ateeq Ur
    Sadiq, Muhammad Tariq
    Hamam, Habib
    CURRENT MEDICAL IMAGING, 2024, 20
  • [38] Diagnostic Value of Chest Ultrasound After Cardiac Surgery: A Comparison With Chest X-ray and Auscultation
    Vezzani, Antonella
    Manca, Tullio
    Brusasco, Claudia
    Santori, Gregorio
    Valentino, Massimo
    Nicolini, Francesco
    Molardi, Alberto
    Gherli, Tiziano
    Corradi, Francesco
    JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2014, 28 (06) : 1527 - 1532
  • [39] Diagnostic value of chest ultrasound after cardiac surgery: a comparison with chest X-ray and auscultation
    A Vezzani
    T Manca
    F Benassi
    A Gallingani
    I Spaggiari
    C Brusasco
    F Corradi
    T Gherli
    Critical Care, 18 (Suppl 1):
  • [40] Comparison of Chest X-ray and Clinical Findings in Trauma Patients after Chest Tube Removal
    Farzan, Ramyar
    Shojaee, Reza
    Haghdoost, Afrooz
    Mobayen, Mohammadreza
    JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH, 2018, 12 (07) : PC19 - PC21