HOMOGENIZATION-BASED SPACE-TIME TOPOLOGY OPTIMIZATION OF TUNABLE MICROSTRUCTURES

被引:1
作者
Keles, A. F. [1 ]
Temizer, I. [1 ,2 ]
Cakmakci, M. [1 ]
机构
[1] Bilkent Univ, Dept Mech Engn, Ankara, Turkiye
[2] Bilkent Univ, Dept Mech Engn, TR-06800 Ankara, Turkiye
关键词
space-time topology optimization; homogenization; tunable microstructures; smart mate-rials; programmable composites;
D O I
10.1615/IntJMultCompEng.2023047719
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A topology optimization framework is developed for smart materials with tunable microstructures. The framework addresses spatial and temporal design variables in a unified setting so as to deliver the optimal periodic microstructure with stimulus-sensitive constituents. The optimal topology allows the macroscopic response of the microstructure to track a time-dependent cyclic path in the stress-strain space with minimal error. The relevant homogenization-based variational analysis for the sensitivity-based optimization framework incorporates not only material variables but also the geometry information regarding the unit cell. Extensive numerical investigations demonstrate the ability of the developed approach to deliver optimal topologies for realizable target macroscopic paths. The error in optimization increases monotonically with the degree of unrealizability, yet the critical role of the microstructure in minimizing the error in comparison to a pure time optimization approach is demonstrated in all cases.
引用
收藏
页码:15 / 34
页数:20
相关论文
共 38 条
[1]  
Ansari M.H., Attarzadeh M.A., Nouh M., Karami M.A., Application of Magnetoelastic Materials in Spatiotemporally Modulated Phononic Crystals for Nonreciprocal Wave Propagation, Smart Mater. Struc, 27, (2018)
[2]  
Ashcroft N.W., Mermin N.D., Solid State Physics, (1976)
[3]  
Barbarosie C., Toader A.M., Optimization of Bodies with Locally Periodic Microstructure by Varying the Periodicity Pattern, Netw. Heterog. Media, 9, pp. 433-451, (2014)
[4]  
Bendsoe M.P., Sigmund O., Topology Optimization: Theory, Methods and Applications, (2004)
[5]  
Bensoe M.P., Kikuchi N., Generating Optimal Toplogies in Structural Design Using a Homogenization Method, Comput. Methods Appl. Mech. Eng, 71, pp. 197-224, (1988)
[6]  
Bou Matar O., Robillard J.F., Vasseur J.O., Hladky-Hennion A.C., Deymier P.A., Pernod P., Preobrazhensky V., Band Gap Tunability of Magneto-Elastic Phononic Crystal, J. Appl. Phys, 111, 5, (2012)
[7]  
Cai P., Wang C., Gao H., Chen X., Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials, Adv. Mater, 33, (2021)
[8]  
Cakal B.A., Temizer I., Terada K., Kato J., Microscopic Design and Optimization of Hydrodynamically Lubricated Dissi-pative Interfaces, Int. J. Numer. Methods Eng, 120, pp. 153-178, (2019)
[9]  
Clausen A., Wang F., Jensen J.S., Sigmund O., Lewis J.A., Topology Optimized Architectures with Programmable Pois-son’s Ratio over Large Deformations, Adv. Mater, 27, pp. 5523-5527, (2015)
[10]  
Francis B., Wonham W., The Internal Model Principle of Linear Control Theory, IFAC Proc, 8, 1, pp. 331-336, (1975)