An optimal transport-based characterization of convex order

被引:0
|
作者
Wiesel, Johannes [1 ]
Zhang, Erica [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math, Wean Hall,5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Columbia Univ, Dept Stat, 1255 Amsterdam Ave, New York, NY 10027 USA
来源
DEPENDENCE MODELING | 2023年 / 11卷 / 01期
关键词
convex order; optimal transport; Wasserstein distance; model-independent finance; MARTINGALE OPTIMAL TRANSPORT; PROBABILITY-MEASURES; DUALITY; BOUNDS;
D O I
10.1515/demo-2023-0102
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For probability measures mu, nu, and rho, define the cost functionals C(mu, rho) := sup(pi is an element of Pi(mu, rho)) integral < x, y >pi(dx, dy) and C(nu, rho) := sup(pi is an element of Pi(nu, rho)) integral < x, y >pi(dx, dy), where <center dot,center dot > denotes the scalar product and Pi(center dot,center dot) is the set of couplings. We show that two probability measures mu and nu on R-d with finite first moments are in convex order (i.e., mu <=(c) nu) iff C(mu, rho) <= C(nu, rho) holds for all probability measures rho on R-d with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of integral fd nu - integral fd mu over all 1-Lipschitz functions f, which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Ruschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Cortically Based Optimal Transport
    Mattia Galeotti
    Giovanna Citti
    Alessandro Sarti
    Journal of Mathematical Imaging and Vision, 2022, 64 : 1040 - 1057
  • [42] Partition-based distributionally robust optimization via optimal transport with order cone constraints
    Esteban-Perez, Adrian
    Morales, Juan M.
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2022, 20 (03): : 465 - 497
  • [43] Partition-based distributionally robust optimization via optimal transport with order cone constraints
    Adrián Esteban-Pérez
    Juan M. Morales
    4OR, 2022, 20 : 465 - 497
  • [44] Non-convex Relaxation of Optimal Transport for Color Transfer Between Images
    Rabin, Julien
    Papadakis, Nicolas
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2015, 2015, 9389 : 87 - 95
  • [45] A new class of costs for optimal transport planning
    Alibert, J-J
    Bouchitte, G.
    Champion, T.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (06) : 1229 - 1263
  • [46] SCALING ALGORITHMS FOR UNBALANCED OPTIMAL TRANSPORT PROBLEMS
    Chizat, Lenaic
    Peyre, Gabriel
    Schmitzer, Bernhard
    Vialard, Francois-Xavier
    MATHEMATICS OF COMPUTATION, 2018, 87 (314) : 2563 - 2609
  • [47] STABILITY OF THE WEAK MARTINGALE OPTIMAL TRANSPORT PROBLEM
    Beiglboeck, Mathias
    Jourdain, Benjamin
    Margheriti, William
    Pammer, Gudmund
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (6B) : 5382 - 5412
  • [48] Distribution functions, external limits and optimal transport
    Iaco, M. R.
    Thonhauser, S.
    Tichy, R. F.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2015, 26 (05): : 823 - 841
  • [49] COMPUTATIONAL STRATEGIES FOR STATISTICAL INFERENCE BASED ON EMPIRICAL OPTIMAL TRANSPORT
    Tameling, Carla
    Munk, Axel
    2018 IEEE DATA SCIENCE WORKSHOP (DSW), 2018, : 175 - 179
  • [50] AUTOMATIC TARGET RECOGNITION USING DISCRIMINATION BASED ON OPTIMAL TRANSPORT
    Sadeghian, Ali
    Lim, Deoksu
    Karlssont, Johan
    Li, Jian
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 2604 - 2608