An optimal transport-based characterization of convex order

被引:0
|
作者
Wiesel, Johannes [1 ]
Zhang, Erica [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math, Wean Hall,5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Columbia Univ, Dept Stat, 1255 Amsterdam Ave, New York, NY 10027 USA
来源
DEPENDENCE MODELING | 2023年 / 11卷 / 01期
关键词
convex order; optimal transport; Wasserstein distance; model-independent finance; MARTINGALE OPTIMAL TRANSPORT; PROBABILITY-MEASURES; DUALITY; BOUNDS;
D O I
10.1515/demo-2023-0102
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For probability measures mu, nu, and rho, define the cost functionals C(mu, rho) := sup(pi is an element of Pi(mu, rho)) integral < x, y >pi(dx, dy) and C(nu, rho) := sup(pi is an element of Pi(nu, rho)) integral < x, y >pi(dx, dy), where <center dot,center dot > denotes the scalar product and Pi(center dot,center dot) is the set of couplings. We show that two probability measures mu and nu on R-d with finite first moments are in convex order (i.e., mu <=(c) nu) iff C(mu, rho) <= C(nu, rho) holds for all probability measures rho on R-d with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of integral fd nu - integral fd mu over all 1-Lipschitz functions f, which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Ruschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A new compound indicator based on optimal transport
    Agosto, Arianna
    Balzanella, Antonio
    Cerchiello, Paola
    STATISTICS, 2025,
  • [32] CHARACTERIZATION OF BARYCENTERS IN THE WASSERSTEIN SPACE BY AVERAGING OPTIMAL TRANSPORT MAPS
    Bigot, Jeremie
    Klein, Thierry
    ESAIM-PROBABILITY AND STATISTICS, 2018, 22 : 35 - 57
  • [33] Efficient Total Probability Prediction via Convex Optimization and Optimal Transport
    Kim, Sanggyun
    Mesa, Diego
    Coleman, Todd
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 681 - 685
  • [34] Application of transport-based metric for continuous interpolation between cryo-EM density maps
    Ecoffet, Arthur
    Woollard, Geoffrey
    Kushner, Artem
    Poitevin, Frederic
    Khanh Dao Duc
    AIMS MATHEMATICS, 2022, 7 (01): : 986 - 999
  • [35] Unsupervised collaborative learning based on Optimal Transport theory
    Ben-Bouazza, Fatima-Ezzahraa
    Bennani, Younes
    Cabanes, Guenael
    Touzani, Abdelfettah
    JOURNAL OF INTELLIGENT SYSTEMS, 2021, 30 (01) : 698 - 719
  • [36] Quantifying Nuclear Structures of Digital Pathology Images Across Cancers Using Transport-Based Morphometry
    Shifat-E-Rabbi, Mohammad
    Ironside, Natasha
    Pathan, Naqib Sad
    Ozolek, John A.
    Singh, Rajendra
    Pantanowitz, Liron
    Rohde, Gustavo K.
    CYTOMETRY PART A, 2025, : 98 - 110
  • [37] Generative Adversarial Networks based on optimal transport: a survey
    Kamsu-Foguem, Bernard
    Msouobu Gueuwou, Shester Landry
    Kounta, Cheick Abdoul Kadir A.
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (07) : 6723 - 6773
  • [38] Cortically Based Optimal Transport
    Galeotti, Mattia
    Citti, Giovanna
    Sarti, Alessandro
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2022, 64 (09) : 1040 - 1057
  • [39] Generative Adversarial Networks based on optimal transport: a survey
    Bernard Kamsu-Foguem
    Shester Landry Msouobu Gueuwou
    Cheick Abdoul Kadir A. Kounta
    Artificial Intelligence Review, 2023, 56 : 6723 - 6773
  • [40] General convex order on risk aggregation
    Jakobsons, Edgars
    Han, Xiaoying
    Wang, Ruodu
    SCANDINAVIAN ACTUARIAL JOURNAL, 2016, (08) : 713 - 740