An optimal transport-based characterization of convex order

被引:0
|
作者
Wiesel, Johannes [1 ]
Zhang, Erica [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math, Wean Hall,5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Columbia Univ, Dept Stat, 1255 Amsterdam Ave, New York, NY 10027 USA
来源
DEPENDENCE MODELING | 2023年 / 11卷 / 01期
关键词
convex order; optimal transport; Wasserstein distance; model-independent finance; MARTINGALE OPTIMAL TRANSPORT; PROBABILITY-MEASURES; DUALITY; BOUNDS;
D O I
10.1515/demo-2023-0102
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For probability measures mu, nu, and rho, define the cost functionals C(mu, rho) := sup(pi is an element of Pi(mu, rho)) integral < x, y >pi(dx, dy) and C(nu, rho) := sup(pi is an element of Pi(nu, rho)) integral < x, y >pi(dx, dy), where <center dot,center dot > denotes the scalar product and Pi(center dot,center dot) is the set of couplings. We show that two probability measures mu and nu on R-d with finite first moments are in convex order (i.e., mu <=(c) nu) iff C(mu, rho) <= C(nu, rho) holds for all probability measures rho on R-d with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of integral fd nu - integral fd mu over all 1-Lipschitz functions f, which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Ruschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Optimal transport-based machine learning to match specific patterns: application to the detection of molecular regulation patterns in omics data
    Nguyen, Thi Thanh Yen
    Harchaoui, Warith
    Megret, Lucile
    Mendoza, Cloe
    Bouaziz, Olivier
    Neri, Christian
    Chambaz, Antoine
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024, 73 (03) : 639 - 657
  • [22] Detection of False Data Injection Attacks in Smart Grids: An Optimal Transport-Based Reliable Self-Training Approach
    Miao, Kaiyao
    Zhang, Meng
    Guo, Fanghong
    Lu, Rongxing
    Guan, Xiaohong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 709 - 723
  • [23] Characterization of comonotonicity using convex order
    Cheung, Ka Chun
    INSURANCE MATHEMATICS & ECONOMICS, 2008, 43 (03) : 403 - 406
  • [24] Optimal transport-based transfer learning for smart manufacturing: Tool wear prediction using out-of-domain data
    Xie, Rui
    Wu, Dazhong
    MANUFACTURING LETTERS, 2021, 29 (29) : 104 - 107
  • [25] WEAK OPTIMAL TRANSPORT WITH UNNORMALIZED KERNELS
    Chone, Philippe
    Gozlan, Nathael
    Kramarz, Francis
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (06) : 6039 - 6092
  • [26] Convex Sobolev inequalities related to unbalanced optimal transport
    Kondratyev, Stanislav
    Vorotnikov, Dmitry
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (07) : 3705 - 3724
  • [27] A multi-marginal c-convex duality theorem for martingale optimal transport
    Sester, Julian
    STATISTICS & PROBABILITY LETTERS, 2024, 210
  • [28] THE DIRECTIONAL OPTIMAL TRANSPORT
    Nutz, Marcel
    Wang, Ruodu
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (02) : 1400 - 1420
  • [29] Lipschitz continuity of the Wasserstein projections in the convex order on the line
    Jourdain, Benjamin
    Margheriti, William
    Pammer, Gudmund
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2023, 28
  • [30] Sampling of probability measures in the convex order by Wasserstein projection
    Alfonsi, Aurelien
    Corbetta, Jacopo
    Jourdain, Benjamin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03): : 1706 - 1729