An optimal transport-based characterization of convex order

被引:0
|
作者
Wiesel, Johannes [1 ]
Zhang, Erica [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math, Wean Hall,5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Columbia Univ, Dept Stat, 1255 Amsterdam Ave, New York, NY 10027 USA
来源
DEPENDENCE MODELING | 2023年 / 11卷 / 01期
关键词
convex order; optimal transport; Wasserstein distance; model-independent finance; MARTINGALE OPTIMAL TRANSPORT; PROBABILITY-MEASURES; DUALITY; BOUNDS;
D O I
10.1515/demo-2023-0102
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For probability measures mu, nu, and rho, define the cost functionals C(mu, rho) := sup(pi is an element of Pi(mu, rho)) integral < x, y >pi(dx, dy) and C(nu, rho) := sup(pi is an element of Pi(nu, rho)) integral < x, y >pi(dx, dy), where <center dot,center dot > denotes the scalar product and Pi(center dot,center dot) is the set of couplings. We show that two probability measures mu and nu on R-d with finite first moments are in convex order (i.e., mu <=(c) nu) iff C(mu, rho) <= C(nu, rho) holds for all probability measures rho on R-d with bounded support. This generalizes a result by Carlier. Our proof relies on a quantitative bound for the infimum of integral fd nu - integral fd mu over all 1-Lipschitz functions f, which is obtained through optimal transport (OT) duality and the characterization result of OT (couplings) by Ruschendorf, by Rachev, and by Brenier. Building on this result, we derive new proofs of well known one-dimensional characterizations of convex order. We also describe new computational methods for investigating convex order and applications to model-independent arbitrage strategies in mathematical finance.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Optimal Transport-Based Polar Interpolation of Directional Fields
    Solomon, Justin
    Vaxman, Amir
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (04):
  • [2] Optimal Transport-Based Patch Matching for Image Style Transfer
    Li, Jie
    Xiang, Yong
    Wu, Hao
    Yao, Shaowen
    Xu, Dan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5927 - 5940
  • [3] An Optimal Transport-Based Restoration Method for Q-Ball Imaging
    Vogt, Thomas
    Lellmann, Jan
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, SSVM 2017, 2017, 10302 : 271 - 282
  • [4] Partial optimal transport-based domain adaptation for hyperspectral image classification
    Wang B.
    Wang S.
    Zhang Z.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (17): : 2555 - 2563
  • [5] Transport-based Counterfactual Models
    De Lara, Lucas
    Gonzalez-Sanz, Alberto
    Asher, Nicholas
    Risser, Laurent
    Loubes, Jean -Michel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 59
  • [6] Optimal Transport-Based Distributionally Robust Optimization: Structural Properties and Iterative Schemes
    Blanchet, Jose
    Murthy, Karthyek
    Zhang, Fan
    MATHEMATICS OF OPERATIONS RESEARCH, 2022, 47 (02) : 1500 - 1529
  • [7] Optimal transport-based domain adaptation for semantic segmentation of remote sensing images
    Shen, Ziyang
    Ni, Huan
    Guan, Haiyan
    Niu, Xiaonan
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (02) : 420 - 450
  • [8] Wasserstein Dictionary Learning: Optimal Transport-Based Unsupervised Nonlinear Dictionary Learning
    Schmitz, Morgan A.
    Heitz, Matthieu
    Bonneel, Nicolas
    Ngole, Fred
    Coeurjolly, David
    Cuturi, Marco
    Peyre, Gabriel
    Starck, Jean-Luc
    SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (01): : 643 - 678
  • [9] CLOT: CONTRASTIVE LEARNING-DRIVEN AND OPTIMAL TRANSPORT-BASED TRAINING FOR SIMULTANEOUS CLUSTERING
    Aburidi, Mohammed
    Marcia, Roummel
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1515 - 1519
  • [10] OPTIMAL TRANSPORT-BASED GRAPH MATCHING FOR 3D RETINAL OCT IMAGE REGISTRATION
    Tian, Xin
    Anantrasirichai, Nantheera
    Nicholson, Lindsay
    Achim, Alin
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2791 - 2795