Strategies to improve CaO absorption cycle stability and progress of catalysts in Ca-based DFMs for integrated CO2 capture-conversion: A critical review

被引:32
作者
Zang, Pengchao [1 ]
Tang, Jiyun [1 ,2 ]
Zhang, Xiaoyang [1 ]
Cui, Lin [1 ]
Chen, Juan [1 ]
Zhao, Pei [1 ]
Dong, Yong [1 ]
机构
[1] Shandong Univ, Natl Engn Lab Reducing Emiss Coal Combust, Engn Res Ctr Environm Thermal Technol, Minist Educ,Shandong Key Lab Energy Carbon Reduct, Jinan 250061, Shandong, Peoples R China
[2] Changji Univ, Sch Energy & Control Engn, Changji 831100, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2023年 / 11卷 / 05期
基金
中国国家自然科学基金;
关键词
CaO-based; CO2; capture; In situ CO2 capture-conversion; Dual-function materials; Process design; Industrial applications; CARBON-DIOXIDE CAPTURE; CALCIUM-BASED SORBENTS; CARBIDE SLAG PELLETS; ONE-STEP SYNTHESIS; FLUE-GAS CO2; HIGHLY EFFICIENT; FLUIDIZED-BED; ALUMINATE PELLETS; CARRYING-CAPACITY; ENERGY-STORAGE;
D O I
10.1016/j.jece.2023.111047
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The capture or utilization of CO2 from industrial sources (i.e., fossil-fueled power plants, cement plants and industrial furnaces) is the priority for achieving carbon reduction. The calcium looping (CaL) process is a promising technology for CO2 capture, where CaO exhibits excellent potential for high temperature CO2 absorbent applications in terms of low cost, abundant storages and high theoretical capture capacity. In addition, integrated CO2 capture-conversion (ICCC) technology is an emerging integrated process that achieves cost reduction and efficiency by capturing CO2 directly from industrial flue gases using Ca-based bifunctional materials (i.e., absorbents and catalysts, DFMs) and simultaneously converting them into high value-added chemicals. In this work, the research progress of Ca-based materials as CO2 absorbents and bifunctional materials are respectively reviewed. The sintering of CaO during the carbonation/calcination cycle caused its absorption capacity to decrease rapidly with the number of cycles, thus limiting the application of Ca-based absorbents. The first section summarizes the incorporation of alkali metals, the optimization of inert components, and the synthesis of highly porous structures to slow down the sintering of CaO particles. Meanwhile, the effects of reaction temperature (carbonation and calcination temperatures) and reaction atmosphere (SO2, H2O and concentrated CO2) on the sintering of CaO pellets are also reviewed. Furthermore, in response to the research progress of ICCC process, the second section analyses and discusses the influence of reaction conditions such as temperature and impurity gases (i.e., NOx, SOx, H2O and O-2, etc.) in the flue gas on ICCC for guidance of future research. Subsequently, the development of Ca-based DFMs categorized by the catalytic component (i.e., Ni, Ru, etc.) is reviewed, including their performance and potential reaction mechanisms. The interaction mechanism between catalyst and absorbent in Ca-based DFMs is reviewed. Finally, the future development of Ca-based CO2 absorbents and bifunctional materials are envisaged. It is also hoped that this work will help researchers to provide effective guidelines in the field of the preparation and reaction conditions of Ca-based materials.
引用
收藏
页数:23
相关论文
共 205 条
[1]   A review on catalyst development for dry reforming of methane to syngas: Recent advances [J].
Abdulrasheed, Abdulrahman ;
Jalil, Aishah Abdul ;
Gambo, Yahya ;
Ibrahim, Maryam ;
Hambali, Hambali Umar ;
Hamill, Muhamed Yusuf Shahul .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 108 :175-193
[2]   Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction [J].
Aihara, M ;
Nagai, T ;
Matsushita, J ;
Negishi, Y ;
Ohya, H .
APPLIED ENERGY, 2001, 69 (03) :225-238
[3]   Structure/activity relationships in coprecipitated nickel-alumina catalysts using CO2 adsorption and methanation [J].
Aksoylu, AE ;
Akin, AN ;
Onsan, ZI ;
Trimm, DL .
APPLIED CATALYSIS A-GENERAL, 1996, 145 (1-2) :185-193
[4]   Methane dry reforming on supported cobalt nanoparticles promoted by boron [J].
Al Abdulghani, Abdullah J. ;
Park, Jung-Hyun ;
Kozlov, Sergey M. ;
Kang, Dong-Chang ;
AlSabban, Bedour ;
Pedireddy, Srikanth ;
Aguilar-Tapia, Antonio ;
Ould-Chikh, Samy ;
Hazemann, Jean-Louis ;
Basset, Jean-Marie ;
Cavallo, Luigi ;
Takanabe, Kazuhiro .
JOURNAL OF CATALYSIS, 2020, 392 :126-134
[5]   Improvement of Limestone-Based CO2 Sorbents for Ca Looping by HBr and Other Mineral Acids [J].
Al-Jeboori, Mohamad J. ;
Nguyen, Michaela ;
Dean, Charles ;
Fennell, Paul S. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (04) :1426-1433
[6]   Effects of Different Dopants and Doping Procedures on the Reactivity of CaO-based Sorbents for CO2 Capture [J].
Al-Jeboori, Mohamad J. ;
Fennell, Paul S. ;
Michaela Nguyen ;
Peng, Ke .
ENERGY & FUELS, 2012, 26 (11) :6584-6594
[7]   Improving Adsorptive Performance of CaO for High-Temperature CO2 Capture through Fe and Ga Doping [J].
Al-Mamoori, Ahmed ;
Lawson, Shane ;
Rownaghi, All A. ;
Rezaei, Fateme .
ENERGY & FUELS, 2019, 33 (02) :1404-1413
[8]   Development of a CaO-Based CO2 Sorbent with Improved Cyclic Stability [J].
Albrecht, Karl O. ;
Wagenbach, Kyle S. ;
Satrio, Justinus A. ;
Shanks, Brent H. ;
Wheelock, Thomas D. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (20) :7841-7848
[9]   Metal-Doped K-Ca Double Salts with Improved Capture Performance and Stability for High-Temperature CO2 Adsorption [J].
Alghamdi, Turki ;
Baamran, Khaled S. ;
Okoronkwo, Monday U. ;
Rownaghi, Ali A. ;
Rezaei, Fateme .
ENERGY & FUELS, 2021, 35 (05) :4258-4266
[10]  
[Anonymous], TRENDS ATMOSPHERIC C