Investigating the Superior Performance of Hard Carbon Anodes in Sodium-Ion Compared With Lithium- and Potassium-Ion Batteries

被引:106
|
作者
Guo, Zhenyu [1 ]
Xu, Zhen [1 ]
Xie, Fei [2 ]
Jiang, Jinglin [1 ]
Zheng, Kaitian [1 ,3 ]
Alabidun, Sarat [1 ]
Crespo-Ribadeneyra, Maria [1 ,4 ]
Hu, Yong-Sheng [2 ]
Au, Heather [1 ]
Titirici, Maria-Magdalena [1 ,5 ]
机构
[1] Imperial Coll London, Dept Chem Engn, London SW7 2AZ, England
[2] Chinese Acad Sci, Beijing Key Lab New Energy Mat & Devices, Beijing Natl Lab Condensed Matter Phys, Key Lab Renewable Energy,Inst Phys, Beijing 100190, Peoples R China
[3] Tianjin Univ, Chem Engn Res Ctr, Sch Chem Engn & Technol, State Key Lab Chem Engn, Tianjin 300072, Peoples R China
[4] Queen Mary Univ London, Sch Mat Sci & Engn, Mile End Rd, London E1 4NS, England
[5] Tohoku Univ, Adv Inst Mat Res WPI AIMR, 2-1-1 Katahira,Aobaku, Sendai, Miyagi 9808577, Japan
基金
英国工程与自然科学研究理事会; 英国科学技术设施理事会;
关键词
hard carbons; lithium-ion batteries; potassium-ion batteries; pouch cells; sodium-ion batteries; INSERTION; SPECTROSCOPY;
D O I
10.1002/adma.202304091
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Emerging sodium-ion batteries (NIBs) and potassium-ion batteries (KIBs) show promise in complementing lithium-ion battery (LIB) technology and diversifying the battery market. Hard carbon is a potential anode candidate for LIBs, NIBs, and KIBs due to its high capacity, sustainability, wide availability, and stable physicochemical properties. Herein, a series of hard carbons is synthesized by hydrothermal carbonization and subsequent pyrolysis at different temperatures to finely tune their structural properties. When tested as anodes, the hard carbons exhibit differing ion-storage trends for Li, Na, and K, with NIBs achieving the highest reversible capacity. Extensive materials and electrochemical characterizations are carried out to study the correlation of structural features with electrochemical performance and to explain the specific mechanisms of alkali-ion storage in hard carbons. In addition, the best-performing hard carbon is tested against a sodium cathode Na3V2(PO4)3 in a Na-ion pouch cell, displaying a high power density of 2172 W kg-1 at an energy density of 181.5 Wh kg-1 (based on the total weight of active materials in both anode and cathode). The Na-ion pouch cell also shows stable ultralong-term cycling (9000 h or 5142 cycles) and demonstrates the promising potential of such materials as sustainable, scalable anodes for beyond Li-batteries. Hard carbons are fabricated via hydrothermal carbonization and subsequent pyrolysis at different temperatures. The hard carbons, as anodes, exhibit differing ion-storage trends for Li, Na, and K. The best-performing material G1500 is tested against a Na3V2(PO4)3 cathode in a Na-ion pouch cell, displaying excellent energy/power densities and cycling performance.image
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Recent Progress on the Alloy-Based Anode for Sodium-Ion Batteries and Potassium-Ion Batteries
    Song, Keming
    Liu, Chuntai
    Mi, Liwei
    Chou, Shulei
    Chen, Weihua
    Shen, Changyu
    SMALL, 2021, 17 (09)
  • [22] Spray-Drying of Electrode Materials for Lithium- and Sodium-Ion Batteries
    Vertruyen, Benedicte
    Eshraghi, Nicolas
    Piffet, Caroline
    Bodart, Jerome
    Mahmoud, Abdelfattah
    Boschini, Frederic
    MATERIALS, 2018, 11 (07)
  • [23] Hard-Carbon Anodes for Sodium-Ion Batteries: Recent Status and Challenging Perspectives
    Shao, Wenlong
    Shi, Haodong
    Jian, Xigao
    Wu, Zhong-Shuai
    Hu, Fangyuan
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (07):
  • [24] Hard carbon anodes for sodium-ion batteries: Dependence of the microstructure and performance on the molecular structure of lignin
    Meng, Qingwei
    Chen, Binyi
    Jian, Wenbin
    Zhang, Xiaoshan
    Sun, Shirong
    Wang, Tiejun
    Zhang, Wenli
    JOURNAL OF POWER SOURCES, 2023, 581
  • [25] Hollow carbon fibers derived from biomass as enhanced anode materials for lithium- and potassium-ion batteries
    Meng, Yanhong
    Li, Wenxin
    Li, Yan
    Liu, Zijin
    Chen, Hongming
    Zhou, Dan
    IONICS, 2024, 30 (02) : 727 - 736
  • [26] Engineering of the Crystalline Lattice of Hard Carbon Anodes Toward Practical Potassium-Ion Batteries
    Zhong, Lei
    Zhang, Wenli
    Sun, Shirong
    Zhao, Lei
    Jian, Wenbin
    He, Xing
    Xing, Zhenyu
    Shi, Zixiong
    Chen, Yanan
    Alshareef, Husam N. N.
    Qiu, Xueqing
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (08)
  • [27] Lithium-Pretreated Hard Carbon as High-Performance Sodium-Ion Battery Anodes
    Xiao, Biwei
    Soto, Fernando A.
    Gu, Meng
    Han, Kee Sung
    Song, Junhua
    Wang, Hui
    Engelhard, Mark H.
    Murugesan, Vijayakumar
    Mueller, Karl T.
    Reed, David
    Sprenkle, Vincent L.
    Balbuena, Perla B.
    Li, Xiaolin
    ADVANCED ENERGY MATERIALS, 2018, 8 (24)
  • [28] Spinifex nanocellulose derived hard carbon anodes for high-performance sodium-ion batteries
    Gaddam, Rohit Ranganathan
    Jiang, Edward
    Amiralian, Nasim
    Annamalai, Pratheep K.
    Martin, Darren J.
    Kumar, Nanjundan Ashok
    Zhao, X. S.
    SUSTAINABLE ENERGY & FUELS, 2017, 1 (05): : 1090 - 1097
  • [29] Gravure-Printed Anodes Based on Hard Carbon for Sodium-Ion Batteries
    Montanino, Maria
    Paoletti, Claudia
    De Girolamo Del Mauro, Anna
    Sico, Giuliano
    BATTERIES-BASEL, 2024, 10 (11):
  • [30] Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries
    Prabakar, S. J. Richard
    Jeong, Jaehyang
    Pyo, Myoungho
    ELECTROCHIMICA ACTA, 2015, 161 : 23 - 31