Development of a deep learning-based model to diagnose mixed-type gastric cancer accurately

被引:1
作者
Ning, Xinjie [1 ]
Liu, Ruide [2 ]
Wang, Nan [1 ]
Xiao, Xuewen [2 ]
Wu, Siqi [1 ]
Wang, Yu [3 ]
Yi, Chenju [1 ,4 ,5 ]
He, Yulong [1 ]
Li, Dan [2 ,7 ]
Chen, Hui [6 ]
机构
[1] Sun Yat sen Univ, Affiliated Hosp 7, Res Ctr, Shenzhen 518107, Peoples R China
[2] Gannan Med Univ, Affiliated Hosp 1, Dept Pathol, Ganzhou 341000, Peoples R China
[3] Peoples Liberat Army Gen Hosp, Dept Resp Dis, Cent Med Branch, Beijing 100081, Peoples R China
[4] Shenzhen Key Lab Chinese Med Act Subst screening &, Shenzhen 518107, Peoples R China
[5] Guangdong Prov Key Lab Brain Funct & Dis, Guangzhou 510080, Peoples R China
[6] Univ Technol Sydney, Fac Sci, Sch Life Sci, Ultimo, NSW 2007, Australia
[7] 128 Jinling Rd, Ganzhou 341000, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Gastric cancer; U-Net; QuPath; Artificial intelligence; Metastasis;
D O I
10.1016/j.biocel.2023.106452
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Objective: The accurate diagnosis of mixed-type gastric cancer from pathology images presents a formidable challenge for pathologists, given its intricate features and resemblance to other subtypes of gastric cancer. Artificial Intelligence has the potential to overcome this hurdle. This study aimed to leverage deep machine learning techniques to establish a precise and efficient diagnostic approach for this cancer type which can also predict the metastatic risk using two software, U-Net and QuPath, which have not been trialled in gastric cancers. Methods: A U-Net neural network was trained to recognise, and segment differentiated components from 186 pathology images of mixed-type gastric cancer. Undifferentiated components in the same images were annotated using the open-source pathology imaging software QuPath. The outcomes from U-Net and QuPath were used to calculate the ratios of differentiation/undifferentiated components which were correlated to lymph node metastasis. Results: The models established by U-Net recognised similar to 91% of the regions of interest, with precision, recall, and F1 values of 90.2%, 90.9% and 94.6%, respectively, indicating a high level of accuracy and reliability. Furthermore, the receiver operating characteristic curve analysis showed an area under the cure of 91%, indicating good performance. A bell-curve correlation between the differentiated/undifferentiated ratio and lymphatic metastasis was found (highest risk between 0.683 and 1.03), which is paradigm-shifting. Conclusion: U-Net and QuPath exhibit promising accuracy in the identification of differentiated and undifferentiated components in mixed-type gastric cancer, as well as paradigm-shifting prediction of metastasis. These findings bring us one step closer to their potential clinical application.
引用
收藏
页数:9
相关论文
共 22 条
[1]   Gastric Cancer, Version 2.2022 [J].
Ajani, Jaffer A. ;
D'Amico, Thomas A. ;
Bentrem, David J. ;
Chao, Joseph ;
Cooke, David ;
Corvera, Carlos ;
Das, Prajnan ;
Enzinger, Peter C. ;
Enzler, Thomas ;
Fanta, Paul ;
Farjah, Farhood ;
Gerdes, Hans ;
Gibson, Michael K. ;
Hochwald, Steven ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Keswani, Rajesh N. ;
Kim, Sunnie ;
Kleinberg, Lawrence R. ;
Klempner, Samuel J. ;
Lacy, Jill ;
Ly, Quan P. ;
Matkowskyj, Kristina A. ;
McNamara, Michael ;
Mulcahy, Mary F. ;
Outlaw, Darryl ;
Park, Haeseong ;
Perry, Kyle A. ;
Pimiento, Jose ;
Poultsides, George A. ;
Reznik, Scott ;
Roses, Robert E. ;
Strong, Vivian E. ;
Su, Stacey ;
Wang, Hanlin L. ;
Wiesner, Georgia ;
Willett, Christopher G. ;
Yakoub, Danny ;
Yoon, Harry ;
McMillian, Nicole ;
Pluchino, Lenora A. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2022, 20 (02) :167-192
[2]   QuPath: Open source software for digital pathology image analysis [J].
Bankhead, Peter ;
Loughrey, Maurice B. ;
Fernandez, Jose A. ;
Dombrowski, Yvonne ;
Mcart, Darragh G. ;
Dunne, Philip D. ;
McQuaid, Stephen ;
Gray, Ronan T. ;
Murray, Liam J. ;
Coleman, Helen G. ;
James, Jacqueline A. ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
SCIENTIFIC REPORTS, 2017, 7
[3]   Computerised scoring protocol for identification and quantification of different immune cell populations in breast tumour regions by the use of QuPath software [J].
Berben, Lieze ;
Wildiers, Hans ;
Marcelis, Lukas ;
Antoranz, Asier ;
Bosisio, Francesca ;
Hatse, Sigrid ;
Floris, Giuseppe .
HISTOPATHOLOGY, 2020, 77 (01) :79-91
[4]   Pathohistological classification systems in gastric cancer: Diagnostic relevance and prognostic value [J].
Berlth, Felix ;
Bollschweiler, Elfriede ;
Drebber, Uta ;
Hoelscher, Arnulf H. ;
Moenig, Stefan .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (19) :5679-5684
[5]   Staging and surgical approaches in gastric cancer: a clinical practice guideline [J].
Coburn, N. ;
Cosby, R. ;
Klein, L. ;
Knight, G. ;
Malthaner, R. ;
Mamazza, J. ;
Mercer, C. D. ;
Ringash, J. .
CURRENT ONCOLOGY, 2017, 24 (05) :324-331
[6]   Lymph node dissection for gastric cancer: Establishment of D2 and the current position of splenectomy in Europe and Japan [J].
Faiz, Z. ;
Hayashi, T. ;
Yoshikawa, T. .
EJSO, 2021, 47 (09) :2233-2236
[7]   U-Net: deep learning for cell counting, detection, and morphometry [J].
Falk, Thorsten ;
Mai, Dominic ;
Bensch, Robert ;
Cicek, Oezguen ;
Abdulkadir, Ahmed ;
Marrakchi, Yassine ;
Boehm, Anton ;
Deubner, Jan ;
Jaeckel, Zoe ;
Seiwald, Katharina ;
Dovzhenko, Alexander ;
Tietz, Olaf ;
Dal Bosco, Cristina ;
Walsh, Sean ;
Saltukoglu, Deniz ;
Tay, Tuan Leng ;
Prinz, Marco ;
Palme, Klaus ;
Simons, Matias ;
Diester, Ilka ;
Brox, Thomas ;
Ronneberger, Olaf .
NATURE METHODS, 2019, 16 (01) :67-+
[8]   Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images [J].
Hirasawa, Toshiaki ;
Aoyama, Kazuharu ;
Tanimoto, Tetsuya ;
Ishihara, Soichiro ;
Shichijo, Satoki ;
Ozawa, Tsuyoshi ;
Ohnishi, Tatsuya ;
Fujishiro, Mitsuhiro ;
Matsuo, Keigo ;
Fujisaki, Junko ;
Tada, Tomohiro .
GASTRIC CANCER, 2018, 21 (04) :653-660
[9]   Feasibility of further expansion of the indications for endoscopic submucosal dissection in undifferentiated-type early gastric cancer [J].
Horiuchi, Yusuke ;
Ida, Satoshi ;
Yamamoto, Noriko ;
Nunobe, Souya ;
Ishizuka, Naoki ;
Yoshimizu, Shoichi ;
Ishiyama, Akiyoshi ;
Yoshio, Toshiyuki ;
Hirasawa, Toshiaki ;
Tsuchida, Tomohiro ;
Kumagai, Koshi ;
Ohashi, Manabu ;
Sano, Takeshi ;
Fujisaki, Junko .
GASTRIC CANCER, 2020, 23 (02) :285-292
[10]   National guidelines for diagnosis and treatment of gastric cancer 2022 in China (English version) National Health Commission of the People's Republic of China [J].
Ji, Jiafu ;
Wang, Rengben ;
Shi, Susheng ;
Liu, Yunpeng ;
Liu, Hongjun ;
Li, Peng ;
Sheng, Lin ;
Wu, Aiwen ;
Zhou, Zhiwei ;
Zhou, Aiping ;
Fang, Xuedong ;
Zhao, Dongbing ;
Hu, Daoyu ;
Xu, Quan ;
Zhang, Zhen ;
Liang, Jun ;
Liang, Han .
CHINESE JOURNAL OF CANCER RESEARCH, 2022, 34 (03) :207-+