Joint Learning of Segmentation and Overall Survival for Brain Tumor based on U-Net

被引:0
作者
Kwon, Junmo [1 ]
Park, Hyunjin [1 ]
机构
[1] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon, South Korea
来源
2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS | 2023年
基金
新加坡国家研究基金会;
关键词
semantic segmentation; overall survival prediction; convolutional neural network; deep learning; magnetic resonance imaging;
D O I
10.1109/CBMS58004.2023.00345
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The prognosis, hence survival, of patients with brain tumors is highly dependent on the size and grade of the tumor. Thus, joint learning of brain tumor segmentation and overall survival of patients with brain tumors can benefit each other. In this work, we explored the feasibility of prediction of patients' overall survival through U-Net guided by the information of brain tumor segmentation. We evaluated the proposed model on the multimodal brain tumor segmentation (BraTS) 2017 challenge dataset. We achieved the mean Dice score of 0.595 for brain tumor segmentation on the test set. The Pearson correlation coefficient for overall survival prediction on the test set was 0.243, indicating promising results for both brain tumor segmentation and overall survival prediction.
引用
收藏
页码:925 / 926
页数:2
相关论文
共 10 条
  • [1] Bakas S., 2017, The cancer imaging archive, V286, DOI DOI 10.7937/K9/TCIA.2017.KLXWJJ1Q
  • [2] Bakas S., 2017, The Cancer Imaging Archive
  • [3] Bakas S, 2019, Arxiv, DOI [arXiv:1811.02629, 10.48550/arXiv.1811.02629, DOI 10.48550/ARXIV.1811.02629]
  • [4] Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
    Bakas, Spyridon
    Akbari, Hamed
    Sotiras, Aristeidis
    Bilello, Michel
    Rozycki, Martin
    Kirby, Justin S.
    Freymann, John B.
    Farahani, Keyvan
    Davatzikos, Christos
    [J]. SCIENTIFIC DATA, 2017, 4
  • [5] Central nervous system tumors
    Buckner, Jan C.
    Brown, Paul D.
    O'Neill, Brian P.
    Meyer, Fredric B.
    Wetmore, Cynthia J.
    Uhm, Joon H.
    [J]. MAYO CLINIC PROCEEDINGS, 2007, 82 (10) : 1271 - 1286
  • [6] Focal Loss for Dense Object Detection
    Lin, Tsung-Yi
    Goyal, Priya
    Girshick, Ross
    He, Kaiming
    Dollar, Piotr
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2999 - 3007
  • [7] The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
    Menze, Bjoern H.
    Jakab, Andras
    Bauer, Stefan
    Kalpathy-Cramer, Jayashree
    Farahani, Keyvan
    Kirby, Justin
    Burren, Yuliya
    Porz, Nicole
    Slotboom, Johannes
    Wiest, Roland
    Lanczi, Levente
    Gerstner, Elizabeth
    Weber, Marc-Andre
    Arbel, Tal
    Avants, Brian B.
    Ayache, Nicholas
    Buendia, Patricia
    Collins, D. Louis
    Cordier, Nicolas
    Corso, Jason J.
    Criminisi, Antonio
    Das, Tilak
    Delingette, Herve
    Demiralp, Cagatay
    Durst, Christopher R.
    Dojat, Michel
    Doyle, Senan
    Festa, Joana
    Forbes, Florence
    Geremia, Ezequiel
    Glocker, Ben
    Golland, Polina
    Guo, Xiaotao
    Hamamci, Andac
    Iftekharuddin, Khan M.
    Jena, Raj
    John, Nigel M.
    Konukoglu, Ender
    Lashkari, Danial
    Mariz, Jose Antonio
    Meier, Raphael
    Pereira, Sergio
    Precup, Doina
    Price, Stephen J.
    Raviv, Tammy Riklin
    Reza, Syed M. S.
    Ryan, Michael
    Sarikaya, Duygu
    Schwartz, Lawrence
    Shin, Hoo-Chang
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) : 1993 - 2024
  • [8] Myronenko A, 2018, Arxiv, DOI [arXiv:1810.11654, DOI 10.48550/ARXIV.1810.11654]
  • [9] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [10] A minimally invasive treatment option for large metastatic brain tumors: long-term results of two-session Gamma Knife stereotactic radiosurgery
    Yomo, Shoji
    Hayashi, Motohiro
    [J]. RADIATION ONCOLOGY, 2014, 9