The Kahler-Ricci flow on log canonical pairs of general type

被引:0
作者
Li, Chang [1 ]
Shen, Liangming [2 ,3 ]
Zheng, Tao [4 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[2] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[3] Minist Educ, Key Lab Math Informat Behav Semant, Beijing 100191, Peoples R China
[4] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国博士后科学基金;
关键词
Kahler-Ricci flow; Log canonical pair; Big and nef; EINSTEIN METRICS; MINIMAL MODELS; SINGULARITIES; VARIETIES; EXISTENCE; CURVATURE;
D O I
10.1016/j.jfa.2023.109984
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize existence results of the Kahler-Ricci flow in [10] to log canonical pairs. We show that if the initial data is in L infinity the Kahler-Ricci flow simultaneously develops the conical and cusp singularities along the regular part of the corresponding pair divisors. Furthermore we could show that the normalized Kahler-Ricci flow converges to the singular Kahler-Einstein metric inside the ample locus of KX + Delta if the log canonical pair is of general type. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:33
相关论文
共 40 条
  • [1] AUBIN T, 1978, B SCI MATH, V102, P63
  • [2] Kahler-Einstein metrics and the Kahler-Ricci flow on log Fano varieties
    Berman, Robert J.
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 27 - 89
  • [3] Kahler-Einstein Metrics on Stable Varieties and log Canonical Pairs
    Berman, Robert J.
    Guenancia, Henri
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (06) : 1683 - 1730
  • [4] A VARIATIONAL APPROACH TO COMPLEX MONGE-AMPERE EQUATIONS
    Berman, Robert J.
    Boucksom, Sebastien
    Guedj, Vincent
    Zeriahi, Ahmed
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2013, (117): : 179 - 245
  • [5] Existence of log canonical flips and a special LMMP
    Birkar, Caucher
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2012, (115): : 325 - 368
  • [6] EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE
    Birkar, Caucher
    Cascini, Paolo
    Hacon, Christopher D.
    McKernan, James
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) : 405 - 468
  • [7] On regularization of plurisubharmonic functions on manifolds
    Blocki, Zbigniew
    Kolodziej, Slawomir
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (07) : 2089 - 2093
  • [9] DEFECT RELATION FOR EQUIDIMENSIONAL HOLOMORPHIC MAPPINGS BETWEEN ALGEBRAIC VARIETIES
    CARLSON, J
    GRIFFITHS, P
    [J]. ANNALS OF MATHEMATICS, 1972, 95 (03) : 557 - +
  • [10] Chau A., ARXIV