Long noncoding RNAs in cardiovascular disease

被引:19
作者
Kohlmaier, Alexander [1 ]
Holdt, Lesca M. [1 ]
Teupser, Daniel [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Univ Hosp, Inst Lab Med, Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Univ Hosp, Inst Lab Med, Marchioninistr 15, D-81377 Munich, Germany
关键词
cardiovascular; disease; long noncoding RNA; splicing; transcription; LNCRNA; HYPERTROPHY; MUTATIONS; SELECTION;
D O I
10.1097/HCO.0000000000001041
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of reviewHere, we review recent findings on the role of long noncoding RNAs (lncRNAs) in cardiovascular disease (CVD). In addition, we highlight some of the latest findings in lncRNA biology, providing an outlook for future avenues of lncRNA research in CVD.Recent findingsRecent publications provide translational evidence from patient studies and animal models for the role of specific lncRNAs in CVD. The molecular effector mechanisms of these lncRNAs are diverse. Overall, cell-type selective modulation of gene expression is the largest common denominator. New methods, such as single-cell profiling and CRISPR/Cas9-screening, reveal additional novel mechanistic principles: For example, many lncRNAs establish RNA-based spatial compartments that concentrate effector proteins. Also, RNA modifications and splicing features can be determinants of lncRNA function.lncRNA research is passing the stage of enumerating lncRNAs or recording simplified on-off expression switches. Mechanistic analyses are starting to reveal overarching principles of how lncRNAs can function. Exploring these principles with decisive genetic testing in vivo remains the ultimate test to discern how lncRNA loci, by RNA motifs or DNA elements, affect CVD pathophysiology.
引用
收藏
页码:179 / 192
页数:14
相关论文
共 57 条
[1]   Integrative single-cell analysis of cardiogenesis identifies developmental trajectories and non-coding mutations in congenital heart disease [J].
Ameen, Mohamed ;
Sundaram, Laksshman ;
Shen, Mengcheng ;
Banerjee, Abhimanyu ;
Kundu, Soumya ;
Nair, Surag ;
Shcherbina, Anna ;
Gu, Mingxia ;
Wilson, Kitchener D. ;
Varadarajan, Avyay ;
Vadgama, Nirmal ;
Balsubramani, Akshay ;
Wu, Joseph C. ;
Engreitz, Jesse M. ;
Farh, Kyle ;
Karakikes, Ioannis ;
Wang, Kevin C. ;
Quertermous, Thomas ;
Greenleaf, William J. ;
Kundaje, Anshul .
CELL, 2022, 185 (26) :4937-+
[2]   From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo [J].
Andergassen, Daniel ;
Rinn, John L. .
NATURE REVIEWS GENETICS, 2022, 23 (04) :229-243
[3]   Role of RNA modifications in cancer [J].
Barbieri, Isaia ;
Kouzarides, Tony .
NATURE REVIEWS CANCER, 2020, 20 (06) :303-322
[4]   Cis-regulated expression of non-conserved lincRNAs associates with cardiometabolic related traits [J].
Cao, Tingyi ;
O'Reilly, Marcella E. ;
Selvaggi, Caitlin ;
Cynn, Esther ;
Lumish, Heidi ;
Xue, Chenyi ;
Jha, Anjali ;
Reilly, Muredach P. ;
Foulkes, Andrea S. .
JOURNAL OF HUMAN GENETICS, 2022, 67 (05) :307-310
[5]   A high-resolution map of human RNA translation [J].
Chothani, Sonia P. ;
Adami, Eleonora ;
Widjaja, Anissa A. ;
Langley, Sarah R. ;
Viswanathan, Sivakumar ;
Pua, Chee Jian ;
Zhihao, Nevin Tham ;
Harmston, Nathan ;
D'Agostino, Giuseppe ;
Whiffin, Nicola ;
Mao, Wang ;
Ouyang, John F. ;
Lim, Wei Wen ;
Lim, Shiqi ;
Lee, Cheryl Q. E. ;
Grubman, Alexandra ;
Chen, Joseph ;
Kovalik, J. P. ;
Tryggvason, Karl ;
Polo, Jose M. ;
Ho, Lena ;
Cook, Stuart A. ;
Rackham, Owen J. L. ;
Schafer, Sebastian .
MOLECULAR CELL, 2022, 82 (15) :2885-+
[6]   Nascent RNA scaffolds contribute to chromosome territory architecture and counter chromatin compaction [J].
Creamer, Kevin Michael ;
Kolpa, Heather Jill ;
Lawrence, Jeanne Bentley .
MOLECULAR CELL, 2021, 81 (17) :3509-+
[7]   Population-scale tissue transcriptomics maps long non-coding RNAs to complex disease [J].
de Goede, Olivia M. ;
Nachun, Daniel C. ;
Ferraro, Nicole M. ;
Gloudemans, Michael J. ;
Rao, Abhiram S. ;
Smail, Craig ;
Eulalio, Tiffany Y. ;
Aguet, Francois ;
Ng, Bernard ;
Xu, Jishu ;
Barbeira, Alvaro N. ;
Castel, Stephane E. ;
Kim-Hellmuth, Sarah ;
Park, YoSon ;
Scott, Alexandra J. ;
Strober, Benjamin J. ;
Brown, Christopher D. ;
Wen, Xiaoquan ;
Hall, Ira M. ;
Battle, Alexis ;
Lappalainen, Tuuli ;
Im, Hae Kyung ;
Ardlie, Kristin G. ;
Mostafavi, Sara ;
Quertermous, Thomas ;
Kirkegaard, Karla ;
Montgomery, Stephen B. .
CELL, 2021, 184 (10) :2633-+
[8]   CARMN Is an Evolutionarily Conserved Smooth Muscle Cell-Specific LncRNA That Maintains Contractile Phenotype by Binding Myocardin [J].
Dong, Kunzhe ;
Shen, Jian ;
He, Xiangqin ;
Hu, Guoqing ;
Wang, Liang ;
Osman, Islam ;
Bunting, Kristopher M. ;
Dixon-Melvin, Rachael ;
Zheng, Zeqi ;
Xin, Hongbo ;
Xiang, Meixiang ;
Vazdarjanova, Almira ;
Fulton, David J. R. ;
Zhou, Jiliang .
CIRCULATION, 2021, 144 (23) :1856-1875
[9]   The Long Noncoding RNA RP11-728F11.4 Promotes Atherosclerosis [J].
Dong, Xian-Hui ;
Lu, Zhi-Feng ;
Kang, Chun-Min ;
Li, Xue-Heng ;
Haworth, Kim E. ;
Ma, Xin ;
Lu, Jing-Bo ;
Liu, Xue-Hui ;
Fang, Fu-Chun ;
Wang, Claire S. ;
Ye, John H. ;
Zheng, Lei ;
Wang, Qian ;
Ye, Shu ;
Hu, Yan-Wei .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2021, 41 (03) :1191-1204
[10]   Extreme purifying selection against point mutations in the human genome [J].
Dukler, Noah ;
Mughal, Mehreen R. ;
Ramani, Ritika ;
Huang, Yi-Fei ;
Siepel, Adam .
NATURE COMMUNICATIONS, 2022, 13 (01)