A field-based recommender system for crop disease detection using machine learning

被引:2
|
作者
Omara, Jonathan [1 ]
Talavera, Estefania [2 ]
Otim, Daniel [1 ]
Turcza, Dan [3 ]
Ofumbi, Emmanuel [4 ]
Owomugisha, Godliver [1 ]
机构
[1] Busitema Univ, Fac Engn, Tororo, Uganda
[2] Univ Twente, Fac Elect Engn Data Management & Biometr, Enschede, Netherlands
[3] Google, AI Social Good, Mountain View, CA USA
[4] Papoli Community Dev Fdn, Tororo, Uganda
来源
FRONTIERS IN ARTIFICIAL INTELLIGENCE | 2023年 / 6卷
关键词
crop disease monitoring; recommendation systems; natural language processing; smart farming; question-answer pairs; food security; CLASSIFICATION;
D O I
10.3389/frai.2023.1010804
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study investigates crop disease monitoring with real-time information feedback to smallholder farmers. Proper crop disease diagnosis tools and information about agricultural practices are key to growth and development in the agricultural sector. The research was piloted in a rural community of smallholder farmers having 100 farmers participating in a system that performs diagnosis on cassava diseases and provides advisory recommendation services with real-time information. Here, we present a field-based recommendation system that provides real-time feedback on crop disease diagnosis. Our recommender system is based on question-answer pairs, and it is built using machine learning and natural language processing techniques. We study and experiment with various algorithms that are considered state-of-the-art in the field. The best performance is achieved with the sentence BERT model (RetBERT), which obtains a BLEU score of 50.8%, which we think is limited by the limited amount of available data. The application tool integrates both online and offline services since farmers come from remote areas where internet is limited. Success in this study will result in a large trial to validate its applicability for use in alleviating the food security problem in sub-Saharan Africa.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Image-based crop disease detection using machine learning
    Dolatabadian, Aria
    Neik, Ting Xiang
    Danilevicz, Monica F.
    Upadhyaya, Shriprabha R.
    Batley, Jacqueline
    Edwards, David
    PLANT PATHOLOGY, 2025, 74 (01) : 18 - 38
  • [2] Automated disease diagnosis and precaution recommender system using supervised machine learning
    Rustam, Furqan
    Imtiaz, Zainab
    Mehmood, Arif
    Rupapara, Vaibhav
    Choi, Gyu Sang
    Din, Sadia
    Ashraf, Imran
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (22) : 31929 - 31952
  • [3] Intelligent Movie Recommender System Using Machine Learning
    Mahata, Abhishek
    Saini, Nandini
    Saharawat, Sneha
    Tiwari, Ritu
    INTELLIGENT HUMAN COMPUTER INTERACTION, IHCI 2016, 2017, 10127 : 94 - 110
  • [4] A Crop Disease Recognition Algorithm Based on Machine Learning
    Zhou, Yuchao
    Zhang, Kailiang
    Shi, Yi
    Cui, Ping
    SIMULATION TOOLS AND TECHNIQUES, SIMUTOOLS 2021, 2022, 424 : 513 - 522
  • [5] A Personalized Recommender System using Machine Learning based Sentiment Analysis over Social Data
    Ashok, Meghana
    Rajanna, Swathi
    Joshi, Pradnyesh Vineet
    Kamath, Sowmya S.
    2016 IEEE STUDENTS' CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER SCIENCE (SCEECS), 2016,
  • [6] Machine Learning-Based Crop Stress Detection in Greenhouses
    Elvanidi, Angeliki
    Katsoulas, Nikolaos
    PLANTS-BASEL, 2023, 12 (01):
  • [7] Survey on crop pest detection using deep learning and machine learning approaches
    Chithambarathanu, M.
    Jeyakumar, M. K.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (27) : 42277 - 42310
  • [8] Crop Yield Management System Using Machine Learning Techniques
    Senthilnayaki, B.
    Narashiman, D.
    Mahalakshmi, G.
    Therese, Julie M.
    Devi, A.
    Dharanyadevi, P.
    2021 IEEE INTERNATIONAL CONFERENCE ON MOBILE NETWORKS AND WIRELESS COMMUNICATIONS (ICMNWC), 2021,
  • [9] Cardiovascular Disease Detection Using Machine Learning
    Ibarra, Rodrigo
    Leon, Jaime
    Avila, Ivan
    Ponce, Hiram
    COMPUTACION Y SISTEMAS, 2022, 26 (04): : 1661 - 1668
  • [10] IoT-Based Plant Disease Detection Using Machine Learning: A Systematic Literature Review
    Mohammad, Abdallah
    Eleyan, Derar
    Eleyan, Amna
    Bejaoui, Tarek
    2024 INTERNATIONAL CONFERENCE ON SMART APPLICATIONS, COMMUNICATIONS AND NETWORKING, SMARTNETS-2024, 2024,