Seven-layer analysis model of an optical waveguide excitation fluorescence microscopy

被引:1
作者
Long, Yuan-Jie [1 ,2 ]
Fan, Guo-Fang [1 ,2 ,7 ,8 ]
Hu, Yan-Jun [1 ,2 ]
Dai, Xin-Gang [1 ,2 ]
Zhang, Hong-Ru [1 ,2 ]
Li, Shi [3 ]
Jing, Gao-Shan [4 ]
Wu, Da-Lin [5 ]
Li, Yuan [6 ]
机构
[1] Beijing Jiaotong Univ, Key Lab All Opt Network, Beijing, Peoples R China
[2] Beijing Jiaotong Univ, Inst Lightwave Technol, Adv Telecommun Network, Minist Educ, Beijing, Peoples R China
[3] Natl Inst Metrol, Beijing, Peoples R China
[4] Chinese Acad Sci, Inst Microelect, Beijing, Peoples R China
[5] Poly Microchip Technol Co LTD, Beijing, Peoples R China
[6] Natl Ctr Testing Technol, Shanghai Inst Measurement & Testing Technol, Natl Ctr Measurement & Testing East China, Shanghai, Peoples R China
[7] Beijing Jiaotong Univ, Key Lab All Opt Network, Beijing 100044, Peoples R China
[8] Beijing Jiaotong Univ, Inst Lightwave Technol, Adv Telecommun Network, Minist Educ, Beijing 100044, Peoples R China
关键词
evanescent field; excitation fluorescence microscopy; optical waveguide; BIOSENSORS;
D O I
10.1111/jmi.13185
中图分类号
TH742 [显微镜];
学科分类号
摘要
In this paper, an optical waveguide evanescent field fluorescence microscopy is studied. Based on Maxwell's equation, a seven-layer theoretical analysis model is developed for the evaluation of an optical waveguide excitation fluorescence microscopy. The optical waveguide excitation fluorescence microscopy structure is systematically and comprehensively analysed at the wavelengths of 488, 532 and 646 nm for fluorescent dyes. The analysis results provide some useful suggestions, which will be beneficial to the research of an optical waveguide evanescent field fluorescence microscopy.
引用
收藏
页码:153 / 160
页数:8
相关论文
共 18 条
  • [11] Real-time imaging of synaptic vesicle exocytosis by total internal reflection fluorescence (TIRF) microscopy
    Midorikawa, Mitsuharu
    [J]. NEUROSCIENCE RESEARCH, 2018, 136 : 1 - 5
  • [12] Calibrating Evanescent-Wave Penetration Depths for Biological TIRF Microscopy
    Oheim, Martin
    Salomon, Adi
    Weissman, Adam
    Brunstein, Maia
    Becherer, Ute
    [J]. BIOPHYSICAL JOURNAL, 2019, 117 (05) : 795 - 809
  • [13] Poulter NS, 2015, METHODS MOL BIOL, V1251, P1, DOI 10.1007/978-1-4939-2080-8_1
  • [14] Fluorescence-based array biosensors for detection of biohazards
    Sapsford, KE
    Shubin, YS
    Delehanty, JB
    Golden, JP
    Taitt, CR
    Shriver-Lake, LC
    Ligler, FS
    [J]. JOURNAL OF APPLIED MICROBIOLOGY, 2004, 96 (01) : 47 - 58
  • [15] Planar-surface-waveguide evanescent-wave chemical sensors
    Srivastava, R
    Bao, C
    GomezReino, C
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 1995, 51 (2-3) : 165 - 171
  • [16] Evanescent wave fluorescence biosensors: Advances of the last decade
    Taitt, Chris Rowe
    Anderson, George P.
    Ligler, Frances S.
    [J]. BIOSENSORS & BIOELECTRONICS, 2016, 76 : 103 - 112
  • [17] Evanescent wave fluorescence biosensors
    Taitt, CR
    Anderson, GP
    Ligler, FS
    [J]. BIOSENSORS & BIOELECTRONICS, 2005, 20 (12) : 2470 - 2487
  • [18] Design and development of integrated TIRF and common-path quantitative phase microscopic health care system with high stability
    Tayal, Shilpa
    Saxena, Anuj
    Singh, Veena
    Kaur, Tejinder
    Singh, Neetu
    Khare, Kedar
    Mehta, Dalip Singh
    [J]. OPTICS AND LASERS IN ENGINEERING, 2022, 155