Microstructure tailoring by manipulating chemical composition in novel CoNiMnCrAl high-entropy alloys

被引:13
|
作者
Mehranpour, Mohammad Sajad [1 ]
Shahmir, Hamed [1 ]
Kim, Hyoung Seop [2 ]
机构
[1] Tarbiat Modares Univ, Dept Mat Engn, Tehran, Iran
[2] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang, South Korea
关键词
High-entropy alloy; Alloy design; Thermodynamic; Microstructure engineering; Mechanical properties; STACKING-FAULT ENERGY; SIGMA-PHASE FORMATION; SOLID-SOLUTION PHASE; MECHANICAL-PROPERTIES; AL ADDITION; TENSILE PROPERTIES; GRAIN-SIZE; BEHAVIOR; EVOLUTION; DEFORMATION;
D O I
10.1016/j.jallcom.2023.169207
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the most important dilemmas in materials science is to overcome the strength-ductility trade-off. There is an increasing trend toward designing alloys with strong precipitates in order to tackle this issue. The brittle sigma phase, a prevalent precipitate in high-entropy alloys, is responsible for the deterioration of the mechanical properties. In this research, a novel Fe-free high-entropy alloy based on Co-Cr-Ni-Mn-Al is introduced with no potential for sigma formation to develop an alloy with a good combination of strength and ductility. Thermodynamic predictions and elemental functions suggested three FCC single-phase high -entropy alloys including Co25Ni30Mn30Cr10Al5, Co30Ni25Mn30Cr10Al5 and Co30Ni30Mn25Cr10Al5 (all in at%) alloys with no sigma phase formation. It was shown that the addition of a minor amount of Al made precipitation hardenable alloys to improve strength due to encouraging the formation of a controlled amount of desirable NiAl-B2 precipitates in the microstructure. The alloys were fabricated and conducted to severe cold rolling followed by short-term annealing at 1000 degrees C to microstructure engineering and improve strength with no scarifying ductility. The Co30Ni25Mn30Cr10Al5 alloy with low stacking fault energy, fine grain size, high area fraction of twins, and formation of fine precipitates in the microstructure represented a very good combination of strength and ductility.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Microstructure and compression properties of semisolid CrCuFeMnNi high-entropy alloys
    Campo, K. N.
    Coury, F. G.
    Caram, R.
    MATERIALS LETTERS, 2023, 351
  • [22] Enhanced ductility in hot compression tests by tailoring microstructure in the refractory high-entropy alloys MoNbTaTiVxZr
    Duan, Chuyi
    Li, Xiaohu
    Werner, Ewald
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 115
  • [23] Relation Between Strength and Hardness of High-Entropy Alloys
    Fan, Xiaojuan
    Qu, Ruitao
    Zhang, Zhefeng
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2021, 34 (11) : 1461 - 1482
  • [24] Science and technology in high-entropy alloys
    Zhang, Weiran
    Liaw, Peter K.
    Zhang, Yong
    SCIENCE CHINA-MATERIALS, 2018, 61 (01) : 2 - 22
  • [25] Investigation of the structure and properties of AlCrCuFeNiVx high-entropy alloys
    Huang, Mengting
    Wang, Canming
    Cui, Hongzhi
    Zhang, Wenya
    Zhang, Chunzhi
    VACUUM, 2020, 173
  • [26] High-Entropy Alloys: A Critical Review
    Tsai, Ming-Hung
    Yeh, Jien-Wei
    MATERIALS RESEARCH LETTERS, 2014, 2 (03): : 107 - 123
  • [27] Three Strategies for the Design of Advanced High-Entropy Alloys
    Tsai, Ming-Hung
    ENTROPY, 2016, 18 (07)
  • [28] Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high-entropy alloys
    Kukshal, Vikas
    Patnaik, Amar
    Bhat, I. K.
    MATERIALS RESEARCH EXPRESS, 2018, 5 (04)
  • [29] An Overview on Fatigue of High-Entropy Alloys
    Hu, Junchao
    Li, Xue
    Zhao, Qiuchen
    Chen, Yangrui
    Yang, Kun
    Wang, Qingyuan
    MATERIALS, 2023, 16 (24)
  • [30] From high-entropy alloys to complex concentrated alloys
    Gorsse, Stephane
    Couzinie, Jean-Philippe
    Miracle, Daniel B.
    COMPTES RENDUS PHYSIQUE, 2018, 19 (08) : 721 - 736