Carnosol inhibits cerebral ischemia-reperfusion injury by promoting AMPK activation

被引:7
|
作者
Xiao, Wen-Chang [1 ,2 ]
Zhou, Gang [3 ]
Jun, Lu [4 ]
Tu, Jun [2 ]
Yu, Yong-Jie [2 ]
She, Zhi-Gang [5 ]
Xu, Chun-Lin [4 ]
Wang, Lei [4 ]
机构
[1] Huanggang Cent Hosp, Dept Cardiovasc Surg, Huanggang, Peoples R China
[2] Huanggang Inst Translat Med, Huanggang, Peoples R China
[3] Huanggang Cent Hosp, Dept Neurol, Huanggang, Peoples R China
[4] Huanggang Cent Hosp, Dept Neurosurg, Huanggang, Peoples R China
[5] Wuhan Univ, Dept Cardiol, Renmin Hosp, Wuhan, Peoples R China
关键词
Carnosol; Ischemic stroke; MCAO; OGD; Primary neuron; PROTEIN-KINASE; CANCER; ANTIOXIDANT; ROSEMARY; INACTIVATION; MECHANISMS; RESISTANCE; APOPTOSIS; STROKE; CELLS;
D O I
10.1016/j.brainresbull.2023.02.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Carnosol is a phytopolyphenol (diterpene) found and extracted from plants of Mediterranean diet, which has anti-tumor, anti-inflammatory and antioxidant effects. However, its role in ischemic stroke has not been elucidated.Methods: Primary neurons subjected to oxygen-glucose deprivation (OGD) was used to investigate the effect of carnosol in vitro. A mouse MCAO model was used to evaluate the effect of carnosol on ischemic stroke in vivo. The mRNA level of inflammatory and apoptosis-related genes was determined by RT-PCR. The protein level of total and phosphorylated AMPK was determined by WB. H&E and Immunofluorescent assay was used to investigate the necrosis, inflammation and apoptosis in brain tissue.Results: Carnosol protected the activity of primary neurons subjected to oxygen-glucose deprivation (OGD) in vitro, as well as inhibited inflammation and apoptosis. Furthermore, carnosol could significantly reduce the infarct and edema volume and protect against neurological deficit in vivo, and had a significant inhibitory effect on brain neuroinflammation and apoptosis. Mechanically, carnosol could activate AMPK, and the effect of carnosol on cerebral ischemia-reperfusion injury cell model could be abolished by AMPK phosphorylation inhibitor.Conclusion: Carnosol has a protective effect on ischemic stroke, and this effect is achieved through AMPK acti-vation. Our study demonstrates the protective effect of carnosol on cerebral ischemia-reperfusion injury and provides a new perspective for the clinical treatment of ischemic stroke.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 50 条
  • [31] Emerging Treatment Strategies for Cerebral Ischemia-Reperfusion Injury
    Li, Mengxing
    Tang, Heyong
    Li, Zhen
    Tang, Wei
    NEUROSCIENCE, 2022, 507 : 112 - 124
  • [32] Influence of batroxobin on cerebral ischemia-reperfusion injury in gerbils
    Chen, Q
    Zeng, YM
    Xu, PC
    Fan, JW
    ACTA PHARMACOLOGICA SINICA, 2000, 21 (02) : 161 - 164
  • [33] Higenamine alleviates cerebral ischemia-reperfusion injury in rats
    Wang, Xiaoping
    Li, Xiaojia
    Wu Jingfen
    Deng Fei
    Peng Mei
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2019, 24 : 859 - 869
  • [34] The role of mitochondrial dynamics in cerebral ischemia-reperfusion injury
    Huang, Jie
    Chen, Lei
    Yao, Zi-meng
    Sun, Xiao-rong
    Tong, Xu-hui
    Dong, Shu-ying
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 162
  • [35] The Correcting Effects of Dihydroquercetin in Cerebral Ischemia-Reperfusion Injury
    Maksimovich, N. Ye.
    Dremza, I. K.
    Troyan, E. I.
    Maksimovich, Ya. N.
    Borodinskii, A. N.
    BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY, 2014, 8 (02) : 150 - 154
  • [36] Ulinastatin attenuates cerebral ischemia-reperfusion injury in rats
    Chen, Hai-Ming
    Huang, Huan-Sen
    Ruan, Lin
    He, Yan-Bing
    Li, Xiong-Juan
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2014, 7 (05): : 1483 - 1489
  • [37] Targeting TRPM channels for cerebral ischemia-reperfusion injury
    Liu, Dai-Qiang
    Mei, Wei
    Zhou, Ya-Qun
    Xi, Hong
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2024, 45 (10) : 862 - 867
  • [38] NLRP3 Inflammasome Activation: A Therapeutic Target for Cerebral Ischemia-Reperfusion Injury
    Wang, Lixia
    Ren, Wei
    Wu, Qingjuan
    Liu, Tianzhu
    Wei, Ying
    Ding, Jiru
    Zhou, Chen
    Xu, Houping
    Yang, Sijin
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2022, 15
  • [39] Activation of PPARγ by 12/15-lipoxygenase during cerebral ischemia-reperfusion injury
    Han, Jing
    Sun, Li
    Xu, Yanwei
    Liang, Hao
    Cheng, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2015, 35 (01) : 195 - 201
  • [40] Inhibition of Peroxynitrite-Induced Mitophagy Activation Attenuates Cerebral Ischemia-Reperfusion Injury
    Jinghan Feng
    Xingmiao Chen
    Binghe Guan
    Caiming Li
    Jinhua Qiu
    Jiangang Shen
    Molecular Neurobiology, 2018, 55 : 6369 - 6386