Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models

被引:8
作者
Huang, Jian [1 ,2 ]
Jin, Wanlin [3 ]
Duan, Xiangjie [4 ]
Liu, Xiaozhu [5 ,6 ]
Shu, Tingting [7 ]
Fu, Li [8 ]
Deng, Jiewen [9 ]
Chen, Huaqiao [5 ]
Liu, Guojing [10 ]
Jiang, Ying [11 ]
Liu, Ziru [1 ]
机构
[1] Cent South Univ, Xiangya Hosp 2, Dept Gen Surg, Changsha, Peoples R China
[2] Guangxi Univ, Chinese Med, Nanning, Peoples R China
[3] Cent South Univ, Xiangya Hosp 2, Hlth Management Ctr, Changsha, Peoples R China
[4] First Peoples Hosp Changde City, Dept Infect Dis, Changde, Peoples R China
[5] Chongqing Med Univ, Affiliated Hosp 2, Dept Cardiol, Chongqing, Peoples R China
[6] Xuzhou Med Univ, Affiliated Hosp 2, Key Lab Neurol Dis, Xuzhou, Peoples R China
[7] Army Med Univ, Mil Med Univ 3, Chongqing, Peoples R China
[8] Hangzhou Dianzi Univ, Coll Mat & Environm Engn, Key Lab Novel Mat Sensor Zhejiang Prov, Hangzhou, Peoples R China
[9] Xiu Shan Peoples Hosp, Dept Neurosurg, Chongqing, Peoples R China
[10] Chongqing Med Univ, Town Hosp, Dept Neurosurg, Chongqing, Peoples R China
[11] Third Mil Med Univ, Army Med Univ, Southwest Hosp, Dept Neurol, Chongqing, Peoples R China
关键词
ischemic stroke; elderly patients; machine learning; hospital mortality; prediction model; RENAL DYSFUNCTION; TERM MORTALITY; DISEASE; ATTACK; DEATH; SCORE;
D O I
10.3389/fpubh.2022.1086339
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
BackgroundRisk stratification of elderly patients with ischemic stroke (IS) who are admitted to the intensive care unit (ICU) remains a challenging task. This study aims to establish and validate predictive models that are based on novel machine learning (ML) algorithms for 28-day in-hospital mortality in elderly patients with IS who were admitted to the ICU. MethodsData of elderly patients with IS were extracted from the electronic intensive care unit (eICU) Collaborative Research Database (eICU-CRD) records of those elderly patients admitted between 2014 and 2015. All selected participants were randomly divided into two sets: a training set and a validation set in the ratio of 8:2. ML algorithms, such as Naive Bayes (NB), eXtreme Gradient Boosting (xgboost), and logistic regression (LR), were applied for model construction utilizing 10-fold cross-validation. The performance of models was measured by the area under the receiver operating characteristic curve (AUC) analysis and accuracy. The present study uses interpretable ML methods to provide insight into the model's prediction and outcome using the SHapley Additive exPlanations (SHAP) method. ResultsAs regards the population demographics and clinical characteristics, the analysis in the present study included 1,236 elderly patients with IS in the ICU, of whom 164 (13.3%) died during hospitalization. As regards feature selection, a total of eight features were selected for model construction. In the training set, both the xgboost and NB models showed specificity values of 0.989 and 0.767, respectively. In the internal validation set, the xgboost model identified patients who died with an AUC value of 0.733 better than the LR model which identified patients who died with an AUC value of 0.627 or the NB model 0.672. ConclusionThe xgboost model shows the best predictive performance that predicts mortality in elderly patients with IS in the ICU. By making the ML model explainable, physicians would be able to understand better the reasoning behind the outcome.
引用
收藏
页数:12
相关论文
共 33 条
[1]   Associations between nonalcoholic fatty liver disease and ischemic stroke [J].
Alkagiet, Stelina ;
Papagiannis, Achilleas ;
Tziomalos, Konstantinos .
WORLD JOURNAL OF HEPATOLOGY, 2018, 10 (07) :474-478
[2]   Overview of artificial intelligence in medicine [J].
Amisha ;
Malik, Paras ;
Pathania, Monika ;
Rathaur, Vyas Kumar .
JOURNAL OF FAMILY MEDICINE AND PRIMARY CARE, 2019, 8 (07) :2328-2331
[3]  
Bhatia RS, 2004, NEUROL INDIA, V52, P220
[4]   Development and Validation of Prediction Models for Severe Complications After Acute Ischemic Stroke: A Study Based on the Stroke Registry of Northwestern Germany [J].
Bonkhoff, Anna K. ;
Rubsamen, Nicole ;
Grefkes, Christian ;
Rost, Natalia S. ;
Berger, Klaus ;
Karch, Andre .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2022, 11 (06)
[5]   Renal Dysfunction Is Associated With Poststroke Discharge Disposition and In-Hospital Mortality: Findings From Get With The Guidelines-Stroke [J].
El Husseini, Nada ;
Fonarow, Gregg C. ;
Smith, Eric E. ;
Ju, Christine ;
Schwamm, Lee H. ;
Hernandez, Adrian F. ;
Schulte, Phillip J. ;
Xian, Ying ;
Goldstein, Larry B. .
STROKE, 2017, 48 (02) :327-334
[6]   Renal dysfunction and chronic kidney disease in ischemic stroke and transient ischemic attack: A population-based study [J].
Hayden, Derek ;
McCarthy, Christine ;
Akijian, Layan ;
Callaly, Elizabeth ;
Ni Chroinin, Danielle ;
Horgan, Gillian ;
Kyne, Lorraine ;
Duggan, Joseph ;
Dolan, Eamon ;
O' Rourke, Killian ;
Williams, David ;
Murphy, Sean ;
O'Meara, Yvonne ;
Kelly, Peter J. .
INTERNATIONAL JOURNAL OF STROKE, 2017, 12 (07) :761-769
[7]   Serum phosphate is associated with mortality among patients admitted to ICU for acute pancreatitis [J].
Hedjoudje, Abdellah ;
Farha, Jad ;
Cheurfa, Cherifa ;
Grabar, Sophie ;
Weiss, Emmanuel ;
Badurdeen, Dilhana ;
Kumbhari, Vivek ;
Prat, Frederic ;
Levy, Philippe ;
Piton, Gael .
UNITED EUROPEAN GASTROENTEROLOGY JOURNAL, 2021, 9 (05) :534-542
[8]   Prediction of in-hospital stroke mortality in critical care unit [J].
Ho, Wei-Min ;
Lin, Jr-Rung ;
Wang, Hui-Hsuan ;
Liou, Chia-Wei ;
Chang, Ku-Chou ;
Lee, Jiann-Der ;
Peng, Tsung-Yi ;
Yang, Jen-Tsung ;
Chang, Yeu-Jhy ;
Chang, Chien-Hung ;
Lee, Tsong-Hai .
SPRINGERPLUS, 2016, 5
[9]   Artificial intelligence in healthcare: past, present and future [J].
Jiang, Fei ;
Jiang, Yong ;
Zhi, Hui ;
Dong, Yi ;
Li, Hao ;
Ma, Sufeng ;
Wang, Yilong ;
Dong, Qiang ;
Shen, Haipeng ;
Wang, Yongjun .
STROKE AND VASCULAR NEUROLOGY, 2017, 2 (04) :230-243
[10]   Global Burden of Stroke [J].
Katan, Mira ;
Luft, Andreas .
SEMINARS IN NEUROLOGY, 2018, 38 (02) :208-211