Facts and Hopes on the Use of Artificial Intelligence for Predictive Immunotherapy Biomarkers in Cancer

被引:36
作者
Laleh, Narmin Ghaffari [1 ]
Ligero, Marta [2 ]
Perez-Lopez, Raquel [2 ,3 ,8 ]
Kather, Jakob Nikolas [1 ,4 ,5 ,6 ,7 ]
机构
[1] Univ Hosp RWTH Aachen, Dept Med 3, Aachen, Germany
[2] Vall dHebron Barcelona Hosp Campus, Vall dHebron Inst Oncol, Radi Grp, Barcelona, Spain
[3] Vall dHebron Univ Hosp, Dept Radiol, Barcelona, Spain
[4] Univ Leeds, Leeds Inst Med Res St Jamess, Div Pathol & Data Analyt, Leeds, England
[5] Univ Hosp Heidelberg, Natl Ctr Tumor Dis NCT, Med Oncol, Heidelberg, Germany
[6] Tech Univ Dresden, Med Fac Carl Gustav Carus, Else Kroener Fresenius Ctr Digital Hlth, Dresden, Germany
[7] Tech Univ Dresden, Else Kroener Fresenius Ctr Digital Hlth, Fetscherstr 74, D-01307 Dresden, Germany
[8] Vall dHebron Inst Oncol VHIO, Cellex Ctr, Natzaret 115-117, Barcelona 08035, Spain
关键词
COLORECTAL-CANCER; IMMUNE; VALIDATION; CARCINOMA; RADIOMICS; TUMORS;
D O I
10.1158/1078-0432.CCR-22-0390
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Immunotherapy by immune checkpoint inhibitors has become a standard treatment strategy for many types of solid tumors. However, the majority of patients with cancer will not respond, and predicting response to this therapy is still a challenge. Artificial intelligence (AI) methods can extract meaningful information from complex data, such as image data. In clinical routine, radiology or histopathology images are ubiquitously available. AI has been used to predict the response to immunotherapy from radiology or histopathology images, either directly or indirectly via surrogate markers. While none of these methods are currently used in clinical routine, academic and commercial developments are pointing toward potential clinical adoption in the near future. Here, we summarize the state of the art in AI-based image biomarkers for immunotherapy response based on radiology and histopathology images. We point out limitations, caveats, and pitfalls, including biases, generalizability, and explainability, which are relevant for researchers and health care providers alike, and outline key clinical use cases of this new class of predictive biomarkers.
引用
收藏
页码:316 / 323
页数:8
相关论文
共 81 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Immunotherapy biomarkers: the long and winding road [J].
Alban, Tyler J. ;
Chan, Timothy A. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2021, 18 (06) :323-324
[3]   The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database [J].
Benjamens, Stan ;
Dhunnoo, Pranavsingh ;
Mesko, Bertalan .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[4]   Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study [J].
Bilal, Mohsin ;
Raza, Shan E. Ahmed ;
Azam, Ayesha ;
Graham, Simon ;
Ilyas, Mohammad ;
Cree, Ian A. ;
Snead, David ;
Minhas, Fayyaz ;
Rajpoot, Nasir M. .
LANCET DIGITAL HEALTH, 2021, 3 (12) :E763-E772
[5]   Predicting Microsatellite Instability Status in Colorectal Cancer Based on Triphasic Enhanced Computed Tomography Radiomics Signatures: A Multicenter Study [J].
Cao, Yuntai ;
Zhang, Guojin ;
Zhang, Jing ;
Yang, Yingjie ;
Ren, Jialiang ;
Yan, Xiaohong ;
Wang, Zhan ;
Zhao, Zhiyong ;
Huang, Xiaoyu ;
Bao, Haihua ;
Zhou, Junlin .
FRONTIERS IN ONCOLOGY, 2021, 11
[6]  
Center for Drug Evaluation Research, 2020, FDA APPROVES PEMBROL
[7]   Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging [J].
Chen, Shuling ;
Feng, Shiting ;
Wei, Jingwei ;
Liu, Fei ;
Li, Bin ;
Li, Xin ;
Hou, Yang ;
Gu, Dongsheng ;
Tang, Mimi ;
Xiao, Han ;
Jia, Yingmei ;
Peng, Sui ;
Tian, Jie ;
Kuang, Ming .
EUROPEAN RADIOLOGY, 2019, 29 (08) :4177-4187
[8]  
Chen ST, 2022, Arxiv, DOI arXiv:2204.03257
[9]   Artificial intelligence to identify genetic alterations in conventional histopathology [J].
Cifci, Didem ;
Foersch, Sebastian ;
Kather, Jakob Nikolas .
JOURNAL OF PATHOLOGY, 2022, 257 (04) :430-444
[10]   Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence [J].
Collins, Gary S. ;
Dhiman, Paula ;
Andaur Navarro, Constanza L. ;
Ma, Ji ;
Hooft, Lotty ;
Reitsma, Johannes B. ;
Logullo, Patricia ;
Beam, Andrew L. ;
Peng, Lily ;
Van Calster, Ben ;
van Smeden, Maarten ;
Riley, Richard D. ;
Moons, Karel G. M. .
BMJ OPEN, 2021, 11 (07)