A graph theoretic approach to neurodegeneration: five data-driven neuropsychological subtypes in mild cognitive impairment

被引:3
作者
Pommy, Jessica [1 ]
Conant, L. [1 ]
Butts, A. M. [1 ]
Nencka, A. [2 ]
Wang, Y. [2 ]
Franczak, M. [1 ]
Glass-Umfleet, L. [1 ]
机构
[1] Med Coll Wisconsin, Dept Neurol, Milwaukee, WI 53226 USA
[2] Med Coll Wisconsin, Dept Radiol, Milwaukee, WI USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Mild cognitive impairment; graph theory; cognitive subtype; Alzheimer's disease; heterogeneity; HETEROGENEITY; PROGRESSION; DEMENTIA; ASSOCIATIONS; PROFILES; CRITERIA; RISK; MCI;
D O I
10.1080/13825585.2022.2163973
中图分类号
B844 [发展心理学(人类心理学)];
学科分类号
040202 ;
摘要
Mild cognitive Impairment (MCI) is notoriously heterogenous in terms of clinical presentation, neuroimaging correlates, and subsequent progression. Predicting who will progress to dementia, which type of dementia, and over what timeframe is challenging. Previous work has attempted to identify MCI subtypes using neuropsychological measures in an effort to address this challenge; however, there is no consensus on approach, which may account for some of the variability. Using a hierarchical community detection approach, we examined cognitive subtypes within an MCI sample (from the Alzheimer's Disease Neuroimaging Initiative [ADNI] study). We then examined whether these subtypes were related to biomarkers (e.g., cortical volumes, fluorodeoxyglucose (FDG)-positron emission tomography (PET) hypometabolism) or clinical progression. We identified five communities (i.e., cognitive subtypes) within the MCI sample: 1) predominantly memory impairment, 2) predominantly language impairment, 3) cognitively normal, 4) multidomain, with notable executive dysfunction, 5) multidomain, with notable processing speed impairment. Community membership was significantly associated with 1) cortical volume in the hippocampus, entorhinal cortex, and fusiform cortex; 2) FDG PET hypometabolism in the posterior cingulate, angular gyrus, and inferior/middle temporal gyrus; and 3) conversion to dementia at follow up. Overall, community detection as an approach appears a viable method for identifying unique cognitive subtypes in a neurodegenerative sample that were linked to several meaningful biomarkers and modestly with progression at one year follow up.
引用
收藏
页码:903 / 922
页数:20
相关论文
共 57 条
[1]   Prognostic Significance of Mild Cognitive Impairment Subtypes for Dementia and Mortality: Data from the NEDICES Cohort [J].
Bermejo-Pareja, Felix ;
Contador, Israel ;
Trincado, Rocio ;
Lora, David ;
Sanchez-Ferro, Alvaro ;
Mitchell, Alex J. ;
Boycheva, Elina ;
Herrero, Alejandro ;
Hernandez-Gallego, Jesus ;
Llamas, Sara ;
Villarejo Galende, Alberto ;
Benito-Leon, Julian .
JOURNAL OF ALZHEIMERS DISEASE, 2016, 50 (03) :719-731
[2]   Distilling Heterogeneity of Mild Cognitive Impairment in the National Alzheimer Coordinating Center Database Using Latent Profile Analysis [J].
Blanken, Anna E. ;
Jang, Jung Yun ;
Ho, Jean K. ;
Edmonds, Emily C. ;
Han, S. Duke ;
Bangen, Katherine J. ;
Nation, Daniel A. .
JAMA NETWORK OPEN, 2020, 3 (03)
[3]   Neuropsychological Criteria for Mild Cognitive Impairment Improves Diagnostic Precision, Biomarker Associations, and Progression Rates [J].
Bondi, Mark W. ;
Edmonds, Emily C. ;
Jak, Amy J. ;
Clark, Lindsay R. ;
Delano-Wood, Lisa ;
McDonald, Carrie R. ;
Nation, Daniel A. ;
Libon, David J. ;
Au, Rhoda ;
Galasko, Douglas ;
Salmon, David P. .
JOURNAL OF ALZHEIMERS DISEASE, 2014, 42 (01) :275-289
[4]   Cognitive aging is not created equally: differentiating unique cognitive phenotypes in "normal" adults [J].
Casaletto, Kaitlin B. ;
Elahi, Fanny M. ;
Staffaroni, Adam M. ;
Walters, Samantha ;
Contreras, Wilfredo Rivera ;
Wolf, Amy ;
Dubal, Dena ;
Miller, Bruce ;
Yaffe, Kristine ;
Kramer, Joel H. .
NEUROBIOLOGY OF AGING, 2019, 77 :13-19
[5]   Are Empirically-Derived Subtypes of Mild Cognitive Impairment Consistent with Conventional Subtypes? [J].
Clark, Lindsay R. ;
Delano-Wood, Lisa ;
Libon, David J. ;
McDonald, Carrie R. ;
Nation, Daniel A. ;
Bangen, Katherine J. ;
Jak, Amy J. ;
Au, Rhoda ;
Salmon, David P. ;
Bondi, Mark W. .
JOURNAL OF THE INTERNATIONAL NEUROPSYCHOLOGICAL SOCIETY, 2013, 19 (06) :635-645
[6]   Going beyond the mean: Intraindividual variability of cognitive performance in prodromal and early neurodegenerative disorders [J].
Costa, Ana Sofia ;
Dogan, Imis ;
Schulz, Joerg B. ;
Reetz, Kathrin .
CLINICAL NEUROPSYCHOLOGIST, 2019, 33 (02) :369-389
[7]   Problems in Classifying Mild Cognitive Impairment (MCI): One or Multiple Syndromes? [J].
del Carmen Diaz-Mardomingo, Maria ;
Garcia-Herranz, Sara ;
Rodriguez-Fernandez, Raquel ;
Venero, Cesar ;
Peraita, Herminia .
BRAIN SCIENCES, 2017, 7 (09)
[8]   Heterogeneity in mild cognitive impairment: Differences in neuropsychological profile and associated white matter lesion pathology [J].
Delano-Wood, Lisa ;
Bondi, Mark W. ;
Sacco, Joshua ;
Abeles, Norm ;
Jak, Amy J. ;
Libon, David J. ;
Bozoki, Andrea .
JOURNAL OF THE INTERNATIONAL NEUROPSYCHOLOGICAL SOCIETY, 2009, 15 (06) :906-914
[9]  
Edler D., 2014, MAPEQUATION SOFTWARE
[10]   Data-Driven vs Consensus Diagnosis of MCI Enhanced Sensitivity for Detection of Clinical, Biomarker, and Neuropathologic Outcomes [J].
Edmonds, Emily C. ;
Smirnov, Denis S. ;
Thomas, Kelsey R. ;
Graves, Lisa V. ;
Bangen, Katherine J. ;
Delano-Wood, Lisa ;
Galasko, Douglas R. ;
Salmon, David P. ;
Bondi, Mark W. .
NEUROLOGY, 2021, 97 (13) :E1288-E1299