Highly stretchable and self-adhesive ionically cross-linked double-network conductive hydrogel sensor for electronic skin

被引:17
|
作者
Deng, Yajuan [1 ]
Li, Tianbao [1 ]
Tu, Qin [1 ]
Wang, Jinyi [1 ]
机构
[1] Northwest A&F Univ, Coll Chem & Pharm, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Wearable sensors; PDA-CNT hydrogel; Polydopamine; Human -activity monitoring; TOUGHNESS; BEHAVIOR;
D O I
10.1016/j.colsurfa.2022.130363
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible, wearable sensors are attracting considerable interest because of their potential applications for human-machine interfaces, human-activity monitoring, and personal healthcare diagnosis. Hydrogels are promising material candidates for the wearable sensors due to their biocompatibility, high water content, structural similarity to natural soft tissues, and resemblance to extracellular matrix. However, the wearable hydrogel sensors have the limitations of poor adhesion and low electroconductivity. Herein, a healable, adhesive, and conductive wearable hydrogel sensor was designed by incorporating polydopamine decorated carbon nanotubes (PDA-CNTs) and FeCl3 into acrylamide-co-acrylic acid polymer (P(AAm-co-AAc)) matrix, forming a catechol/P(AAm-co-AAc)/Fe3+ double-network hydrogel sensor. The hydrogel sensor displayed good stretch-ability and high sensitivity with a gauge factor of 44.2 at 700% strain. And it exhibited fast and repeatable self -healing ability (healed completely after 60 s at room temperature without any external assistance). The resis-tance of the hydrogel showed repeatable and periodic variations during multiple cyclic stretching (1000 cycles), demonstrating good stability of this hydrogel sensor. The PDA-CNT hydrogel also showed strong adhesiveness to various substrates, including glass, metal, and plastic. When adhered onto a human body, the hydrogel was able to accurately monitor various motions, such as the bending of finger, wrist, elbow, and knee. These results showed the hydrogel sensor's sensitivity and repeatability for detecting human motions. The healable, adhesive, conductive hydrogel is a promising material for wearable sensors to monitor human motion and can be used for personal healthcare diagnosis and therapy.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A stretchable, self-adhesive, conductive double-network hydrogel and its application in flexible strain sensors
    Gege Shi
    Tianyu Zhan
    Yufang Hu
    Zhiyong Guo
    Sui Wang
    Journal of Polymer Research, 2023, 30
  • [2] A stretchable, self-adhesive, conductive double-network hydrogel and its application in flexible strain sensors
    Shi, Gege
    Zhan, Tianyu
    Hu, Yufang
    Guo, Zhiyong
    Wang, Sui
    JOURNAL OF POLYMER RESEARCH, 2023, 30 (02)
  • [3] A highly stretchable, self-adhesive, anti-freezing, and highly sensitive dual-network conductive hydrogel sensor for multifunctional electronic skin
    Zhang, Rui
    Xie, Di
    Zhang, Congcong
    Xu, Zesheng
    Fang, Yiqun
    Wang, Weihong
    Xu, Min
    Song, Yongming
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (45) : 24608 - 24617
  • [4] Highly stretchable, healable, sensitive double-network conductive hydrogel for wearable sensor
    Zheng, Wenhui
    Li, Yangyang
    Xu, Lijuan
    Huang, Yudong
    Jiang, Zaixing
    Li, Bing
    POLYMER, 2020, 211
  • [5] Sweat-Enhanced Self-Adhesive Double-Network Hydrogel for Dynamic Skin Electrophysiology
    Liang, Huarun
    Zhu, Mengjia
    Li, Shuo
    Wang, Haomin
    Li, Donghang
    Liang, Xiaoping
    Lu, Haojie
    Wu, Xun-En
    Ma, Haoxuan
    Liu, Nan
    Zhang, Yingying
    ACS MATERIALS LETTERS, 2024, 6 (11): : 4922 - 4931
  • [6] An integrated self-healable and robust conductive hydrogel for dynamically self-adhesive and highly conformable electronic skin
    Shao, Changyou
    Meng, Lei
    Cui, Chen
    Yang, Jun
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (48) : 15208 - 15218
  • [7] Highly stretchable, conductive, and self-adhesive starch-based hydrogel for high-performance flexible electronic devices
    Chen, Rui
    Wang, Lei
    Ji, Dan
    Luo, Mengqing
    Zhang, Zihao
    Zhao, Guiyan
    Chang, Xiaohua
    Zhu, Yutian
    CARBOHYDRATE POLYMERS, 2025, 352
  • [8] Double-network hydrogel-based stretchable, adhesive, and conductive e-skin sensor coupled human skin-like biocompatible and protective properties
    Zhao, Chunxia
    Liu, Liang
    Guo, Min
    Sun, Zhe
    Chen, Yunxin
    Wu, Yuanpeng
    Li, Yuntao
    Xiang, Dong
    Li, Hui
    Li, Zhenyu
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 652
  • [9] Highly Sensitive Pressure and Strain Sensors Based on Stretchable and Recoverable Ion-Conductive Physically Cross-Linked Double-Network Hydrogels
    Zhou, Linjie
    Wang, Zhenwu
    Wu, Changsong
    Cong, Yang
    Zhang, Rui
    Fu, Jun
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (46) : 51969 - 51977
  • [10] Conductive double-network hydrogel for a highly conductive anti-fatigue flexible sensor
    Gao, Yi
    Wei, Cuilian
    Zhao, Shuangliang
    Gao, Wei
    Li, Zequan
    Li, Hong
    Luo, Jianju
    Song, Xianyu
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (03)