FedProLs: federated learning for IoT perception data prediction

被引:12
|
作者
Zeng, Qingtian [1 ]
Lv, Zhenzhen [1 ]
Li, Chao [1 ]
Shi, Yongkui [1 ]
Lin, Zedong [1 ]
Liu, Cong [1 ]
Song, Ge [1 ]
机构
[1] Shandong Univ Sci & Technol, Qingdao, Peoples R China
关键词
Federated learning; Internet of Things; Prophet; LSTM; INTERNET; NETWORK;
D O I
10.1007/s10489-022-03578-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the development of Internet of Things, sensor devices collect massive amounts of data. However, due to privacy protection requirement, data cannot be shared and collected. How to integrate independent perception data into deep learning is one of the most challenging problems. In this paper, we present a novel framework (FedProLs) for IoT perception data prediction based on a horizontal federated learning model. The framework is constructed by the client nodes and the server nodes, and the training data of the federated learning system is deployed on the client nodes. Each client uses its own data to train machine learning models locally and encrypts its training model parameters and sends it to the server nodes. The server node uses the federated averaging method to construct a global model for prediction. In addition, we propose a new multi-feature factor model (ProLs) as a client-node machine learning model. Finally, the proposed FedProLs and ProLs models are compared with the single model Prophet, LSTM and BP Neural Networks, and combine model CNN-LSTM, ARIMA. The experimental results using two real-life IoT perception data sets demonstrate that the FedProLs and the participants' ProLs achieves better results in terms of Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) than existing methods. The FedProLs model is suitable for distributed independent data protection when predicting the perception data of Internet of Things (IOT).
引用
收藏
页码:3563 / 3575
页数:13
相关论文
共 50 条
  • [11] A framework for privacy-preservation of IoT healthcare data using Federated Learning and blockchain technology
    Singh, Saurabh
    Rathore, Shailendra
    Alfarraj, Osama
    Tolba, Amr
    Yoon, Byungun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 129 : 380 - 388
  • [12] IoT Malicious Traffic Detection Based on Federated Learning
    Shen, Yi
    Zhang, Yuhan
    Li, Yuwei
    Ding, Wanmeng
    Hu, Miao
    Li, Yang
    Huang, Cheng
    Wang, Jie
    DIGITAL FORENSICS AND CYBER CRIME, PT 1, ICDF2C 2023, 2024, 570 : 249 - 263
  • [13] Cross-Layer Federated Learning for Lightweight IoT Intrusion Detection Systems
    Hajj, Suzan
    Azar, Joseph
    Abdo, Jacques Bou
    Demerjian, Jacques
    Guyeux, Christophe
    Makhoul, Abdallah
    Ginhac, Dominique
    SENSORS, 2023, 23 (16)
  • [14] IoT Data Security: An Integration of Blockchain and Federated Learning
    Shubham, Gagandeep
    Agarwal, Vidushi
    Pal, Sujata
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 434 - 439
  • [15] Federated Learning for IoT Intrusion Detection
    Lazzarini, Riccardo
    Tianfield, Huaglory
    Charissis, Vassilis
    AI, 2023, 4 (03) : 509 - 530
  • [16] On the Performance of Federated Learning Algorithms for IoT
    Tahir, Mehreen
    Ali, Muhammad Intizar
    IOT, 2022, 3 (02): : 273 - 284
  • [17] FedEHR: A Federated Learning Approach towards the Prediction of Heart Diseases in IoT-Based Electronic Health Records
    Bebortta, Sujit
    Tripathy, Subhranshu Sekhar
    Basheer, Shakila
    Chowdhary, Chiranji Lal
    DIAGNOSTICS, 2023, 13 (20)
  • [18] Privacy-Preserving Big Data Security for IoT With Federated Learning and Cryptography
    Awan, Kamran Ahmad
    Din, Ikram Ud
    Almogren, Ahmad
    Rodrigues, Joel J. P. C.
    IEEE ACCESS, 2023, 11 : 120918 - 120934
  • [19] Time series prediction in IoT: a comparative study of federated versus centralized learning.
    da Costa, Leonardo F.
    Furtado, Lia S.
    Rocha, Paulo H. G.
    Rego, Paulo A. L.
    Trinta, Fernando A. M.
    2023 IEEE 20TH CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2023,
  • [20] Privacy preserving personalized blockchain reliability prediction via federated learning in IoT environments
    Xu, Jianlong
    Lin, Jian
    Liang, Wei
    Li, Kuan-Ching
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (04): : 2515 - 2526