Zebrafish raptor mutation inhibits the activity of mTORC1, inducing craniofacial defects due to autophagy-induced neural crest cell death

被引:0
作者
Tucker, Scott K. [1 ]
Gosul, Ritika [1 ]
Swartz, Mary E. [1 ]
Zhang, Stephanie [1 ]
Eberhart, Johann K. [1 ]
机构
[1] Univ Texas, Waggoner Ctr Alcohol & Addict Res, Dept Mol Biosci, Austin, TX 78712 USA
来源
DEVELOPMENT | 2024年 / 151卷 / 06期
基金
美国国家卫生研究院;
关键词
Autophagy; Cell death; Craniofacial; MTOR; Neural crest; Zebrafish; EMBRYONIC-DEVELOPMENT; MOLECULAR-MECHANISMS; PROTEIN; TARGET; GROWTH; PHOSPHORYLATION; IDENTIFICATION; METABOLISM; APOPTOSIS; SURVIVAL;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mechanistic target of rapamycin (mTOR) coordinates metabolism and cell growth with environmental inputs. mTOR forms two functional complexes: mTORC1 and mTORC2. Proper development requires both complexes but mTORC1 has unique roles in numerous cellular processes, including cell growth, survival and autophagy. Here, we investigate the function of mTORC1 in craniofacial development. We created a zebrafish raptor mutant via CRISPR/Cas9, to specifically disrupt mTORC1. The entire craniofacial skeleton and eyes were reduced in size in mutants; however, overall body length and developmental timing were not affected. The craniofacial phenotype associates with decreased chondrocyte size and increased neural crest cell death. We found that autophagy is elevated in raptor mutants. Chemical inhibition of autophagy reduced cell death and improved craniofacial phenotypes in raptor mutants. Genetic inhibition of autophagy, via mutation of the autophagy gene atg7, improved facial phenotypes in atg7;raptor double mutants, relative to raptor single mutants. We conclude that finely regulated levels of autophagy, via mTORC1, are crucial for craniofacial development.
引用
收藏
页数:16
相关论文
共 78 条
[71]   METABOLISM Sestrin2 is a leucine sensor for the mTORC1 pathway [J].
Wolfson, Rachel L. ;
Chantranupong, Lynne ;
Saxton, Robert A. ;
Shen, Kuang ;
Scaria, Sonia M. ;
Cantor, Jason R. ;
Sabatini, David M. .
SCIENCE, 2016, 351 (6268) :43-48
[72]   Autophagosome formation: Core machinery and adaptations [J].
Xie, Zhiping ;
Klionsky, Daniel J. .
NATURE CELL BIOLOGY, 2007, 9 (10) :1102-1109
[73]   Stimulation of mTORC1 with L-leucine Rescues Defects Associated with Roberts Syndrome [J].
Xu, Baoshan ;
Lee, Kenneth K. ;
Zhang, Lily ;
Gerton, Jennifer L. .
PLOS GENETICS, 2013, 9 (10)
[74]   Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor [J].
Yue, ZY ;
Jin, SK ;
Yang, CW ;
Levine, AJ ;
Heintz, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (25) :15077-15082
[75]   Profiling and functional characterization of maternal mRNA translation during mouse maternal-to-zygotic transition [J].
Zhang, Chunxia ;
Wang, Meng ;
Li, Yisi ;
Zhang, Yi .
SCIENCE ADVANCES, 2022, 8 (05)
[76]   Why should autophagic flux be assessed? [J].
Zhang, Xiao-jie ;
Chen, Sheng ;
Huang, Kai-xing ;
Le, Wei-dong .
ACTA PHARMACOLOGICA SINICA, 2013, 34 (05) :595-599
[77]   Inflammation-induced mammalian target of rapamycin signaling is essential for retina regeneration [J].
Zhang, Zhiqiang ;
Hou, Haitao ;
Yu, Shuguang ;
Zhou, Cuiping ;
Zhang, Xiaoli ;
Li, Na ;
Zhang, Shuqiang ;
Song, Kaida ;
Lu, Ying ;
Liu, Dong ;
Lu, Hong ;
Xu, Hui .
GLIA, 2020, 68 (01) :111-127
[78]   m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition [J].
Zhao, Boxuan Simen ;
Wang, Xiao ;
Beadell, Alana V. ;
Lu, Zhike ;
Shi, Hailing ;
Kuuspalu, Adam ;
Ho, Robert K. ;
He, Chuan .
NATURE, 2017, 542 (7642) :475-+