Zebrafish raptor mutation inhibits the activity of mTORC1, inducing craniofacial defects due to autophagy-induced neural crest cell death

被引:0
作者
Tucker, Scott K. [1 ]
Gosul, Ritika [1 ]
Swartz, Mary E. [1 ]
Zhang, Stephanie [1 ]
Eberhart, Johann K. [1 ]
机构
[1] Univ Texas, Waggoner Ctr Alcohol & Addict Res, Dept Mol Biosci, Austin, TX 78712 USA
来源
DEVELOPMENT | 2024年 / 151卷 / 06期
基金
美国国家卫生研究院;
关键词
Autophagy; Cell death; Craniofacial; MTOR; Neural crest; Zebrafish; EMBRYONIC-DEVELOPMENT; MOLECULAR-MECHANISMS; PROTEIN; TARGET; GROWTH; PHOSPHORYLATION; IDENTIFICATION; METABOLISM; APOPTOSIS; SURVIVAL;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mechanistic target of rapamycin (mTOR) coordinates metabolism and cell growth with environmental inputs. mTOR forms two functional complexes: mTORC1 and mTORC2. Proper development requires both complexes but mTORC1 has unique roles in numerous cellular processes, including cell growth, survival and autophagy. Here, we investigate the function of mTORC1 in craniofacial development. We created a zebrafish raptor mutant via CRISPR/Cas9, to specifically disrupt mTORC1. The entire craniofacial skeleton and eyes were reduced in size in mutants; however, overall body length and developmental timing were not affected. The craniofacial phenotype associates with decreased chondrocyte size and increased neural crest cell death. We found that autophagy is elevated in raptor mutants. Chemical inhibition of autophagy reduced cell death and improved craniofacial phenotypes in raptor mutants. Genetic inhibition of autophagy, via mutation of the autophagy gene atg7, improved facial phenotypes in atg7;raptor double mutants, relative to raptor single mutants. We conclude that finely regulated levels of autophagy, via mTORC1, are crucial for craniofacial development.
引用
收藏
页数:16
相关论文
共 78 条
[41]   Molecular mechanisms of mTOR-mediated translational control [J].
Ma, Xiaoju Max ;
Blenis, John .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (05) :307-318
[42]   Target of rapamycin (TOR) signaling controls epithelial morphogenesis in the vertebrate intestine [J].
Makky, Khadijah ;
Tekiela, Jackie ;
Mayer, Alan N. .
DEVELOPMENTAL BIOLOGY, 2007, 303 (02) :501-513
[43]   Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-Kinase/Akt pathway [J].
Manning, BD ;
Tee, AR ;
Logsdon, MN ;
Blenis, J ;
Cantley, LC .
MOLECULAR CELL, 2002, 10 (01) :151-162
[44]   Studying Autophagy in Zebrafish [J].
Mathai, Benan John ;
Meijer, Annemarie H. ;
Simonsen, Anne .
CELLS, 2017, 6 (03)
[45]   Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion [J].
Mauthe, Mario ;
Orhon, Idil ;
Rocchi, Cecilia ;
Zhou, Xingdong ;
Luhr, Morten ;
Hijlkema, Kerst-Jan ;
Coppes, Robert P. ;
Engedal, Nikolai ;
Mari, Muriel ;
Reggiori, Fulvio .
AUTOPHAGY, 2018, 14 (08) :1435-1455
[46]  
Mawed Suzan Attia, 2022, Aquaculture and Fisheries, V7, P359, DOI 10.1016/j.aaf.2021.01.002
[47]   An Fgf-Shh signaling hierarchy regulates early specification of the zebrafish skull [J].
McCarthy, Neil ;
Sidik, Alfire ;
Bertrand, Julien Y. ;
Eberhart, Johann K. .
DEVELOPMENTAL BIOLOGY, 2016, 415 (02) :261-277
[48]   Pdgfra protects against ethanol-induced craniofacial defects in a zebrafish model of FASD [J].
McCarthy, Neil ;
Wetherill, Leah ;
Lovely, C. Ben ;
Swartz, Mary E. ;
Foroud, Tatiana M. ;
Eberhart, Johann K. .
DEVELOPMENT, 2013, 140 (15) :3254-3265
[49]   VARIATIONS OF BOX PLOTS [J].
MCGILL, R ;
TUKEY, JW ;
LARSEN, WA .
AMERICAN STATISTICIAN, 1978, 32 (01) :12-16
[50]   Zebrafish as a model to study autophagy and its role in skeletal development and disease [J].
Moss, Joanna J. ;
Hammond, Chrissy L. ;
Lane, Jon D. .
HISTOCHEMISTRY AND CELL BIOLOGY, 2020, 154 (05) :549-564