A machine learning approach for early identification of patients with severe imported malaria

被引:2
作者
D'Abramo, Alessandra [1 ]
Rinaldi, Francesco [2 ]
Vita, Serena [1 ]
Mazzieri, Riccardo [3 ]
Corpolongo, Angela [1 ]
Palazzolo, Claudia [1 ]
Bartoli, Tommaso Ascoli [1 ]
Faraglia, Francesca [1 ]
Giancola, Maria Letizia [1 ]
Girardi, Enrico [1 ]
Nicastri, Emanuele [1 ]
机构
[1] Natl Inst Infect Dis Lazzaro Spallanzani IRCCS, Via Portuense 292, I-00149 Rome, Italy
[2] Padova Univ, Dept Math Tullio Levi Civita, Via Trieste 63, I-35131 Padua, Italy
[3] Univ Padua, Dept Informat Engn, Via Giovanni Gradenigo 6B, I-35131 Padua, Italy
关键词
Imported malaria; Machine learning; Severe malaria; Risk factors;
D O I
10.1186/s12936-024-04869-3
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
BackgroundThe aim of this study is to design ad hoc malaria learning (ML) approaches to predict clinical outcome in all patients with imported malaria and, therefore, to identify the best clinical setting.MethodsThis is a single-centre cross-sectional study, patients with confirmed malaria, consecutively hospitalized to the Lazzaro Spallanzani National Institute for Infectious Diseases, Rome, Italy from January 2007 to December 2020, were recruited. Different ML approaches were used to perform the analysis of this dataset: support vector machines, random forests, feature selection approaches and clustering analysis.ResultsA total of 259 patients with malaria were enrolled, 89.5% patients were male with a median age of 39 y/o. In 78.3% cases, Plasmodium falciparum was found. The patients were classified as severe malaria in 111 cases. From ML analyses, four parameters, AST, platelet count, total bilirubin and parasitaemia, are associated to a negative outcome. Interestingly, two of them, aminotransferase and platelet are not included in the current list of World Health Organization (WHO) criteria for defining severe malaria.ConclusionIn conclusion, the application of ML algorithms as a decision support tool could enable the clinicians to predict the clinical outcome of patients with malaria and consequently to optimize and personalize clinical allocation and treatment.
引用
收藏
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 2014, Annual epidemiological report 2014- food and waterborne diseaes and zoonoses
[2]   Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass [J].
Bernabeu, Maria ;
Danziger, Samuel A. ;
Avril, Marion ;
Vaz, Marina ;
Babar, Prasad H. ;
Brazier, Andrew J. ;
Herricks, Thurston ;
Maki, Jennifer N. ;
Pereira, Ligia ;
Mascarenhas, Anjali ;
Gomes, Edwin ;
Chery, Laura ;
Aitchison, John D. ;
Rathod, Pradipsinh K. ;
Smith, Joseph D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (23) :E3270-E3279
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Severe Imported Falciparum Malaria: A Cohort Study in 400 Critically Ill Adults [J].
Bruneel, Fabrice ;
Tubach, Florence ;
Corne, Philippe ;
Megarbane, Bruno ;
Mira, Jean-Paul ;
Peytel, Eric ;
Camus, Christophe ;
Schortgen, Frederique ;
Azoulay, Elie ;
Cohen, Yves ;
Georges, Hugues ;
Meybeck, Agnes ;
Hyvernat, Herve ;
Trouillet, Jean-Louis ;
Frenoy, Eric ;
Nicolet, Laurent ;
Roy, Carine ;
Durand, Remy ;
Le Bras, Jacques ;
Wolff, Michel .
PLOS ONE, 2010, 5 (10)
[5]   Identification of a Novel Clinical Phenotype of Severe Malaria using a Network-Based Clustering Approach [J].
Cominetti, Ornella ;
Smith, David ;
Hoffman, Fred ;
Jallow, Muminatou ;
Thezenas, Marie L. ;
Huang, Honglei ;
Kwiatkowski, Dominic ;
Maini, Philip K. ;
Casals-Pascual, Climent .
SCIENTIFIC REPORTS, 2018, 8
[6]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[7]   Imported severe malaria and risk factors for intensive care: A single-centre retrospective analysis [J].
D'Abramo, Alessandra ;
Lepore, Luciana ;
Iannetta, Marco ;
Tekle, Saba Gebremeskel ;
Corpolongo, Angela ;
Scorzolini, Laura ;
Bevilacqua, Nazario ;
Mariano, Andrea ;
Giancola, Maria Letizia ;
Vulcano, Antonella ;
Maritti, Micaela ;
Agresta, Alessandro ;
Antonini, Mario ;
D'Alessandro, Umberto ;
Nicastri, Emanuele .
PLOS ONE, 2019, 14 (11)
[8]   Platelet disturbances correlate with endothelial cell activation in uncomplicatedPlasmodium vivaxmalaria [J].
Dos-Santos, Joao Conrado Khouri ;
Silva-Filho, Joao Luiz ;
Judice, Carla C. ;
Kayano, Ana Carolina Andrade Vitor ;
Aliberti, Julio ;
Khouri, Ricardo ;
de Lima, Diogenes S. ;
Nakaya, Helder ;
Lacerda, Marcus Vinicius Guimaraes ;
De Paula, Erich Vinicius ;
Lopes, Stefanie Costa Pinto ;
Costa, Fabio Trindade Maranhao .
PLOS NEGLECTED TROPICAL DISEASES, 2020, 14 (07) :1-14
[9]   MORTALITY FROM PLASMODIUM-FALCIPARUM MALARIA IN TRAVELERS FROM THE UNITED-STATES, 1959 TO 1987 [J].
GREENBERG, AE ;
LOBEL, HO .
ANNALS OF INTERNAL MEDICINE, 1990, 113 (04) :326-327
[10]   A systematic and prospectively validated approach for identifying synergistic drug combinations against malaria [J].
KalantarMotamedi, Yasaman ;
Eastman, Richard T. ;
Guha, Rajarshi ;
Bender, Andreas .
MALARIA JOURNAL, 2018, 17