ORTHOGONAL STABILITY OF GENERALIZED CUBE ROOT FUNCTIONAL INEQUALITY IN THREE VARIABLES: A FIXED POINT APPROACH

被引:0
作者
Gupta, Eena [1 ]
Chugh, Renu [2 ]
机构
[1] Pt Neki Ram Sharma Govt Coll, Dept Math, Rohtak 124001, Haryana, India
[2] Maharshi Dayanand Univ, Dept Math, Rohtak 124001, Haryana, India
来源
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 2023年 / 15卷 / 04期
关键词
Functional inequality; Fixed point theory; Hyers-Ulam stability; ULAM-RASSIAS STABILITY; EQUATION;
D O I
10.54671/BMAA-2023-4-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper underlined the aspects of stability of orthogonal generalized cube root functional (GCRF) inequality parallel to C (al + bm + cn + 3(al)(2/3) (bm)(1/3) + (cn)(1/3) + 3(bm)(2/3) (al)(1/3) + (cn)(1/3) + 3(cn)(2/3) (bm)(1/3) + (al)(1/3) + 6(abclmn)(1/3)) - a(1/3)C(l) - b(1/3)C(m)parallel to <=parallel to c(1/3)C(n)parallel to for all l, m, n is an element of S with l perpendicular to m, m perpendicular to n and n perpendicular to l using fixed point approach where C : S -> Z is a mapping from an orthogonal space (S, perpendicular to) into a real Banach space, perpendicular to represents the orthogonality relation and a, b, c are real numbers with a not equal 0, b not equal 0, c not equal 0. Using these results, we present the stability of GCRF inequality in two variables also.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 32 条
  • [11] On the stability of the linear functional equation
    Hyers, DH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 : 222 - 224
  • [12] Isac G., 1996, INT J MATH MATH SCI, V19, P219
  • [13] Approximation Properties of Solutions of a Mean Value-Type Functional Inequality, II
    Jung, Soon-Mo
    Lee, Ki-Suk
    Rassias, Michael Th.
    Yang, Sung-Mo
    [J]. MATHEMATICS, 2020, 8 (08)
  • [14] Kim C. I, 2021, Journal of Computational Analysis and Applications, V29, P34
  • [15] Non-Archimedean Stability of a Generalized Reciprocal-Quadratic Functional Equation in Several Variables by Direct and Fixed Point Methods
    Kumar, B. V. Senthil
    Dutta, Hemen
    [J]. FILOMAT, 2018, 32 (09) : 3199 - 3209
  • [16] Hyers-Ulam stability of functional equations in matrix normed spaces
    Lee, Jung Rye
    Shin, Dong Yun
    Park, Choonkil
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [17] Luxemburg W, 1958, Nederl. Akad. Wetensch. Proc. Ser. A 61 Indag. Math., V20
  • [18] On the stability of the additive Cauchy functional equation in random normed spaces
    Mihet, Dorel
    Radu, Viorel
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 567 - 572
  • [19] Movahednia E, 2013, J MATH COMPUT SCI-JM, V6, P72
  • [20] Najati A., 2013, J. Nonlinear Anal. Appl., P1