Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings

被引:22
|
作者
Chen, Jianxiong [1 ,2 ]
Ren, Fuhao [1 ,2 ]
Yin, Ningning [1 ,2 ]
Mao, Jie [1 ,2 ]
机构
[1] Ningxia Univ, Coll Chem & Chem Engn, State Key Lab High Efficiency Utilizat Coal & Gree, Yinchuan 750021, Peoples R China
[2] Ningxia Univ, Sch Chem & Chem Engn, Yinchuan 750021, Peoples R China
关键词
Electrostatic interactions; Hydrogen bonding; Self; -assembly; Charge injection barriers; BORON-NITRIDE NANOSHEETS; POLYMER NANOCOMPOSITES; EXFOLIATION; CONSTANT; DENSITY;
D O I
10.1016/j.cej.2023.147581
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polymer dielectrics, serving as integral components in electrostatic capacitors, must meet the escalating demands for electrical energy storage and conversion in harsh environments. However, the current enhancement of breakdown strength in polymer composite materials often relies on intricate nanostructure designs or inorganic deposition methods, which result in high production costs, slow processing, and hinder industrial scalability. Here, we present an economically efficient and easily implementable surface modification approach. This method induces the self-assembly of high-insulation-performance boron nitride nanosheets (BNNS) on the film surface through electrostatic interactions, thereby enhancing the high-temperature electrical insulation and energy storage performance of polymer dielectrics. At room temperature, the breakdown strength of the BNNScoated polyetherimide (PEI) significantly increased to 544 MV/m, representing a 100 MV/m improvement compared to pure PEI. At elevated temperatures (200 degrees C), the organic insulator achieved a high breakdown strength of 439 MV/m and a high energy density of 2.59 J/cm3. The tangential orientation of the nanosheets effectively impedes charge injection from electrodes while promoting charge dissipation and heat transfer. This work provides a novel avenue for the design of high-performance polymer dielectrics for high-temperature energy storage through surface engineering.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Crosslinked dielectric materials for high-temperature capacitive energy storage
    Tang, Yadong
    Xu, Wenhan
    Niu, Sen
    Zhang, Zhicheng
    Zhang, Yunhe
    Jiang, Zhenhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (16) : 10000 - 10011
  • [2] Scalable Ultrathin All-Organic Polymer Dielectric Films for High-Temperature Capacitive Energy Storage
    Ren, Weibin
    Yang, Minzheng
    Zhou, Le
    Fan, Youjun
    He, Shan
    Pan, Jiayu
    Tang, Tongxiang
    Xiao, Yao
    Nan, Ce-Wen
    Shen, Yang
    ADVANCED MATERIALS, 2022, 34 (47)
  • [3] Engineering Poly(phthalazinone ether sulfone) Dielectric Films for Stable High-Temperature Capacitive Energy Storage
    Gu, Chengwen
    Sun, Fanchen
    Wang, Qitong
    Li, Jiahui
    Zhao, Yi
    Zhang, Yunhe
    Zhang, Shouhai
    Jian, Xigao
    Weng, Zhihuan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2023, 62 (51) : 22131 - 22140
  • [4] Scalable Polyimide-Organosilicate Hybrid Films for High-Temperature Capacitive Energy Storage
    Dong, Jiufeng
    Li, Li
    Qiu, Peiqi
    Pan, Yupeng
    Niu, Yujuan
    Sun, Liang
    Pan, Zizhao
    Liu, Yuqi
    Tan, Li
    Xu, Xinwei
    Xu, Chen
    Luo, Guangfu
    Wang, Qing
    Wang, Hong
    ADVANCED MATERIALS, 2023, 35 (20)
  • [5] Enhancement of high-temperature dielectric energy storage performances of polyimide nanocomposites utilizing surface functionalized MAX nanosheets
    Feng, Qi-Kun
    Dong, Qi
    Zhang, Dong-Li
    Pei, Jia-Yao
    Dang, Zhi-Min
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 218
  • [6] Interface engineering of polymer composite films for high-temperature capacitive energy storage
    Yu, Xiang
    Yang, Rui
    Zhang, Wenqi
    Yang, Xiao
    Ma, Chuang
    Sun, Kaixuan
    Shen, Guangyi
    Lv, Fangcheng
    Fan, Sidi
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [7] Dielectric films for high performance capacitive energy storage: multiscale engineering
    Pan, Hao
    Kursumovic, Ahmed
    Lin, Yuan-Hua
    Nan, Ce-Wen
    MacManus-Driscoll, Judith L.
    NANOSCALE, 2020, 12 (38) : 19582 - 19591
  • [8] High-Temperature Dielectric Materials for Electrical Energy Storage
    Li, Qi
    Yao, Fang-Zhou
    Liu, Yang
    Zhang, Guangzu
    Wang, Hong
    Wang, Qing
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 48, 2018, 48 : 219 - 243
  • [9] Significantly enhanced high-temperature capacitive energy storage in cyclic olefin copolymer dielectric films via ultraviolet irradiation
    Bao, Zhiwei
    Ding, Song
    Dai, Zhizhan
    Wang, Yiwei
    Jia, Jiangheng
    Shen, Shengchun
    Yin, Yuewei
    Li, Xiaoguang
    MATERIALS HORIZONS, 2023, 10 (06) : 2120 - 2127
  • [10] Ladderphane copolymers for high-temperature capacitive energy storage
    Chen, Jie
    Zhou, Yao
    Huang, Xingyi
    Yu, Chunyang
    Han, Donglin
    Wang, Ao
    Zhu, Yingke
    Shi, Kunming
    Kang, Qi
    Li, Pengli
    Jiang, Pingkai
    Qian, Xiaoshi
    Bao, Hua
    Li, Shengtao
    Wu, Guangning
    Zhu, Xinyuan
    Wang, Qing
    NATURE, 2023, 615 (7950) : 62 - +