Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings

被引:26
作者
Chen, Jianxiong [1 ,2 ]
Ren, Fuhao [1 ,2 ]
Yin, Ningning [1 ,2 ]
Mao, Jie [1 ,2 ]
机构
[1] Ningxia Univ, Coll Chem & Chem Engn, State Key Lab High Efficiency Utilizat Coal & Gree, Yinchuan 750021, Peoples R China
[2] Ningxia Univ, Sch Chem & Chem Engn, Yinchuan 750021, Peoples R China
关键词
Electrostatic interactions; Hydrogen bonding; Self; -assembly; Charge injection barriers; BORON-NITRIDE NANOSHEETS; POLYMER NANOCOMPOSITES; EXFOLIATION; CONSTANT; DENSITY;
D O I
10.1016/j.cej.2023.147581
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polymer dielectrics, serving as integral components in electrostatic capacitors, must meet the escalating demands for electrical energy storage and conversion in harsh environments. However, the current enhancement of breakdown strength in polymer composite materials often relies on intricate nanostructure designs or inorganic deposition methods, which result in high production costs, slow processing, and hinder industrial scalability. Here, we present an economically efficient and easily implementable surface modification approach. This method induces the self-assembly of high-insulation-performance boron nitride nanosheets (BNNS) on the film surface through electrostatic interactions, thereby enhancing the high-temperature electrical insulation and energy storage performance of polymer dielectrics. At room temperature, the breakdown strength of the BNNScoated polyetherimide (PEI) significantly increased to 544 MV/m, representing a 100 MV/m improvement compared to pure PEI. At elevated temperatures (200 degrees C), the organic insulator achieved a high breakdown strength of 439 MV/m and a high energy density of 2.59 J/cm3. The tangential orientation of the nanosheets effectively impedes charge injection from electrodes while promoting charge dissipation and heat transfer. This work provides a novel avenue for the design of high-performance polymer dielectrics for high-temperature energy storage through surface engineering.
引用
收藏
页数:9
相关论文
共 63 条
[1]   Surface Charging and Its Effects on DC Flashover Strength of Insulating Materials [J].
Amer, Mohammed ;
Laninga, Jeff ;
McDermid, William ;
Swatek, David R. ;
Kordi, Behzad .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2018, 25 (06) :2452-2460
[2]   Quasi-Isotropically Thermal Conductive, Highly Transparent, Insulating and Super-Flexible Polymer Films Achieved by Cross Linked 2D Hexagonal Boron Nitride Nanosheets [J].
An, Lulu ;
Gu, Rong ;
Zhong, Bo ;
Wang, Jilin ;
Zhang, Junyan ;
Yu, Yuanlie .
SMALL, 2021, 17 (46)
[3]   High-Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High-Temperature Dielectric Materials [J].
Azizi, Amin ;
Gadinski, Matthew R. ;
Li, Qi ;
Abu AlSaud, Mohammed ;
Wang, Jianjun ;
Wang, Yi ;
Wang, Bo ;
Liu, Feihua ;
Chen, Long-Qing ;
Alem, Nasim ;
Wang, Qing .
ADVANCED MATERIALS, 2017, 29 (35)
[4]   Negatively Charged Nanosheets Significantly Enhance the Energy-Storage Capability of Polymer-Based Nanocomposites [J].
Bao, Zhiwei ;
Hou, Chuangming ;
Shen, Zhonghui ;
Sun, Haoyang ;
Zhang, Genqiang ;
Luo, Zhen ;
Dai, Zhizhan ;
Wang, Chengming ;
Chen, Xiaowei ;
Li, Liangbin ;
Yin, Yuewei ;
Shen, Yang ;
Li, Xiaoguang .
ADVANCED MATERIALS, 2020, 32 (25)
[5]   Current injection from a metal to a disordered hopping system.: III.: Comparison between experiment and Monte Carlo simulation [J].
Barth, S ;
Wolf, U ;
Bässler, H ;
Müller, P ;
Riel, H ;
Vestweber, H ;
Seidler, PF ;
Riess, W .
PHYSICAL REVIEW B, 1999, 60 (12) :8791-8797
[6]   Conduction Mechanisms and Structure-Property Relationships in High Energy Density Aromatic Polythiourea Dielectric Films [J].
Burlingame, Quinn ;
Wu, Shan ;
Lin, Minren ;
Zhang, Q. M. .
ADVANCED ENERGY MATERIALS, 2013, 3 (08) :1051-1055
[7]   Enhancing high field dielectric properties of polymer films by wrapping a thin layer of self-assembled boron nitride film [J].
Chen, Chao ;
Xie, Yunchuan ;
Wang, Jian ;
Lan, Yu ;
Wei, Xiaoyong ;
Zhang, Zhicheng .
APPLIED SURFACE SCIENCE, 2021, 535
[8]   High dielectric constant and low dielectric loss poly(vinylidene fluoride) nanocomposites via a small loading of two-dimensional Bi2Te3@Al2O3 hexagonal nanoplates [J].
Chen, Jianwen ;
Wang, Xiucai ;
Yu, Xinmei ;
Yao, Lingmin ;
Duan, Zhikui ;
Fan, Yun ;
Jiang, Yewen ;
Zhou, Yuexia ;
Pan, Zhongbin .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (02) :271-279
[9]   Chemical adsorption on 2D dielectric nanosheets for matrix free nanocomposites with ultrahigh electrical energy storage [J].
Chen, Jie ;
Shen, Zhonghui ;
Kang, Qi ;
Qian, Xiaoshi ;
Li, Shengtao ;
Jiang, Pingkai ;
Huang, Xingyi .
SCIENCE BULLETIN, 2022, 67 (06) :609-618
[10]   Polymer-Based Dielectrics with High Energy Storage Density [J].
Chen, Qin ;
Shen, Yang ;
Zhang, Shihai ;
Zhang, Q. M. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 45, 2015, 45 :433-458