A Data-driven Technique for Network Line Parameter Estimation Using Gaussian Processes

被引:0
作者
Priyanka, A. G. [1 ]
Monti, Antonello [1 ]
Ponci, Ferdinanda [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Automat Complex Power Syst, Aachen, Germany
来源
2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM | 2023年
关键词
Gaussian Processes; Machine Learning; Physics-informed; Pi-Model; Parameter Estimation;
D O I
10.1109/PESGM52003.2023.10252495
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes a unique data-driven physics-informed approach to network line parameter estimation, where the parameters of linear continuous-time domain equation governing line dynamics are learnt by modeling the line end voltage and current signals as Gaussian processes. The proposed method allows parameter estimation along with prediction of measurement signal and associated uncertainty in a single framework. The method is tested for parameter estimation on IEEE 14-bus and 9-bus network under steady-state operating condition.
引用
收藏
页数:5
相关论文
共 50 条
[41]   Developing Data-Driven Approaches for Traffic Density Estimation Using Connected Vehicle Data [J].
Aljamal, Mohammad A. ;
Farag, Mohamed ;
Rakha, Hesham A. .
IEEE ACCESS, 2020, 8 :219622-219631
[42]   Covariance parameter estimation of Gaussian processes with approximated functional inputs [J].
Reding, Lucas ;
Lopez-Lopera, Andres F. ;
Bachoc, Francois .
JOURNAL OF MULTIVARIATE ANALYSIS, 2025, 205
[43]   Analysis of the expansion of a GSM network using Gaussian Processes [J].
Cuesta Ramirez, Jhouben Janyk ;
Orozco Gutierrez, Alvaro Angel ;
Alvarez Lopez, Mauricio Alexander .
REVISTA ITECKNE, 2013, 10 (02) :149-157
[44]   Data-Driven Parameter Selection and Modeling for Concrete Carbonation [J].
Duan, Kangkang ;
Cao, Shuangyin .
MATERIALS, 2022, 15 (09)
[45]   Data-driven photocatalytic degradation activity prediction with Gaussian process [J].
Chow, Vinky ;
Phan, Raphael C-W ;
Le Ngo, Anh Cat ;
Krishnasamy, Ganesh ;
Chai, Siang-Piao .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 161 :848-859
[46]   A DATA-DRIVEN APPROACH TO STOCHASTIC NETWORK OPTIMIZATION [J].
Chen, Tianyi ;
Mokhtari, Aryan ;
Wang, Xin ;
Ribeiro, Alejandro ;
Giannakis, Georgios B. .
2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, :510-514
[47]   A Survey on Data-driven Network Intrusion Detection [J].
Chou, Dylan ;
Jiang, Meng .
ACM COMPUTING SURVEYS, 2022, 54 (09)
[48]   Data-Driven Linear Parameter-Varying Model Identification Using Transfer Learning [J].
Bao, Yajie ;
Velni, Javad Mohammadpour .
IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (05) :1579-1584
[49]   Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation [J].
Pathiraja, S. ;
Moradkhani, H. ;
Marshall, L. ;
Sharma, A. ;
Geenens, G. .
WATER RESOURCES RESEARCH, 2018, 54 (02) :1252-1280
[50]   Data-driven roughness estimation of additively manufactured samples using build angles [J].
Galarza, Jose ;
Barron, Jorge, Jr. ;
Ahmed, Farid ;
Li, Jianzhi .
MANUFACTURING LETTERS, 2024, 41 :1092-1099