A Data-driven Technique for Network Line Parameter Estimation Using Gaussian Processes

被引:0
作者
Priyanka, A. G. [1 ]
Monti, Antonello [1 ]
Ponci, Ferdinanda [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Automat Complex Power Syst, Aachen, Germany
来源
2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM | 2023年
关键词
Gaussian Processes; Machine Learning; Physics-informed; Pi-Model; Parameter Estimation;
D O I
10.1109/PESGM52003.2023.10252495
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes a unique data-driven physics-informed approach to network line parameter estimation, where the parameters of linear continuous-time domain equation governing line dynamics are learnt by modeling the line end voltage and current signals as Gaussian processes. The proposed method allows parameter estimation along with prediction of measurement signal and associated uncertainty in a single framework. The method is tested for parameter estimation on IEEE 14-bus and 9-bus network under steady-state operating condition.
引用
收藏
页数:5
相关论文
共 50 条
[31]   Data-Driven Learning for Resilient Synchronization and Parameter Estimation of Heterogeneous Nonlinear Multiagent Systems [J].
Yang, Wang ;
Dong, Jiuxiang .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (04) :6992-7003
[32]   Data-driven predictive modeling of Hubble parameter [J].
Salti, Mehmet ;
Ciger, Emel ;
Kangal, Evrim Ersin ;
Zengin, Bilgin .
PHYSICA SCRIPTA, 2022, 97 (08)
[33]   Data-driven stochastic AC-OPF using Gaussian process regression [J].
Mitrovic, Mile ;
Lukashevich, Aleksandr ;
Vorobev, Petr ;
Terzija, Vladimir ;
Budennyy, Semen ;
Maximov, Yury ;
Deka, Deepjyoti .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 152
[34]   Topology Change Aware Data-Driven Probabilistic Distribution State Estimation Based on Gaussian Process [J].
Cao, Di ;
Zhao, Junbo ;
Hu, Weihao ;
Liao, Qishu ;
Huang, Qi ;
Chen, Zhe .
IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (02) :1317-1320
[35]   Polymer extrusion die design using a data-driven autoencoders technique [J].
Chady Ghnatios ;
Eloi Gravot ;
Victor Champaney ;
Nicolas Verdon ;
Nicolas Hascoët ;
Francisco Chinesta .
International Journal of Material Forming, 2024, 17
[36]   Polymer extrusion die design using a data-driven autoencoders technique [J].
Ghnatios, Chady ;
Gravot, Eloi ;
Champaney, Victor ;
Verdon, Nicolas ;
Hascoet, Nicolas ;
Chinesta, Francisco .
INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2024, 17 (01)
[37]   Sedimentological data-driven bottom friction parameter estimation in modelling Bristol Channel tidal dynamics [J].
Simon C. Warder ;
Athanasios Angeloudis ;
Matthew D. Piggott .
Ocean Dynamics, 2022, 72 :361-382
[38]   A Data-Driven Topology and Parameter Joint Estimation Method in Non-PMU Distribution Networks [J].
Wang, Xiaoxue ;
Zhao, Yikang ;
Zhou, Yue .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (01) :1681-1692
[39]   GAUSSIAN PROCESS EMULATION FOR BIG DATA IN DATA-DRIVEN METAMATERIALS DESIGN [J].
Bostanabad, Ramin ;
Chan, Yu-Chin ;
Wang, Liwei ;
Zhu, Ping ;
Chen, Wei .
PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 2A, 2020,
[40]   Sedimentological data-driven bottom friction parameter estimation in modelling Bristol Channel tidal dynamics [J].
Warder, Simon C. ;
Angeloudis, Athanasios ;
Piggott, Matthew D. .
OCEAN DYNAMICS, 2022, 72 (06) :361-382