A Data-driven Technique for Network Line Parameter Estimation Using Gaussian Processes

被引:0
作者
Priyanka, A. G. [1 ]
Monti, Antonello [1 ]
Ponci, Ferdinanda [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Automat Complex Power Syst, Aachen, Germany
来源
2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM | 2023年
关键词
Gaussian Processes; Machine Learning; Physics-informed; Pi-Model; Parameter Estimation;
D O I
10.1109/PESGM52003.2023.10252495
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes a unique data-driven physics-informed approach to network line parameter estimation, where the parameters of linear continuous-time domain equation governing line dynamics are learnt by modeling the line end voltage and current signals as Gaussian processes. The proposed method allows parameter estimation along with prediction of measurement signal and associated uncertainty in a single framework. The method is tested for parameter estimation on IEEE 14-bus and 9-bus network under steady-state operating condition.
引用
收藏
页数:5
相关论文
共 50 条
[21]   Optical network physical layer parameter optimization for digital backpropagation using Gaussian processes [J].
Nevin, Josh W. ;
Sillekens, Eric ;
Sohanpal, Ronit ;
Galdino, Lidia ;
Nallaperuma, Sam ;
Bayvel, Polina ;
Savory, Seb J. .
DATA-CENTRIC ENGINEERING, 2023, 4 (01)
[22]   Machine learning technique for data-driven fault detection of nonlinear processes [J].
Said, Maroua ;
ben Abdellafou, Khaoula ;
Taouali, Okba .
JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (04) :865-884
[23]   Machine learning technique for data-driven fault detection of nonlinear processes [J].
Maroua Said ;
Khaoula ben Abdellafou ;
Okba Taouali .
Journal of Intelligent Manufacturing, 2020, 31 :865-884
[24]   Data-driven approach for time-delay estimation of industrial processes [J].
Ma, Xin-Yue ;
Huang, Chun-Qing .
ISA TRANSACTIONS, 2023, 137 :35-58
[25]   OPTIMAL ESTIMATION FOR KEY PARAMETERS OF THE MARINE QUALITY MODEL USING DATA-DRIVEN NEURAL NETWORK [J].
Li, Ming-Chang ;
Liang, Shu-Xiu ;
Sun, Zhao-Chen ;
Zhang, Guang-Yu .
JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2010, 18 (05) :771-779
[26]   Data-Driven Estimation of Blood Pressure Using Photoplethysmographic Signals [J].
Gao, Shi Chao ;
Wittek, Peter ;
Zhao, Li ;
Jiang, Wen Jun .
2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, :766-769
[27]   Gaussian Processes for Vegetation Parameter Estimation from Hyperspectral Data with Limited Ground Truth [J].
Gewali, Utsav B. ;
Monteiro, Sildomar T. ;
Saber, Eli .
REMOTE SENSING, 2019, 11 (13)
[28]   Optimal rates for parameter estimation of stationary Gaussian processes [J].
Es-Sebaiy, Khalifa ;
Viensb, Frederi G. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) :3018-3054
[29]   Data-Driven Parameter Estimation of Lumped-Element Models via Automatic Differentiation [J].
Mezza, Alessandro Ilic ;
Giampiccolo, Riccardo ;
Bernardini, Alberto .
IEEE ACCESS, 2023, 11 :143601-143615
[30]   An adaptive parallel tempering method for the dynamic data-driven parameter estimation of nonlinear models [J].
Armstrong, Matthew J. ;
Beris, Antony N. ;
Wagner, Norman J. .
AICHE JOURNAL, 2017, 63 (06) :1937-1958