A Data-driven Technique for Network Line Parameter Estimation Using Gaussian Processes

被引:0
作者
Priyanka, A. G. [1 ]
Monti, Antonello [1 ]
Ponci, Ferdinanda [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Automat Complex Power Syst, Aachen, Germany
来源
2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM | 2023年
关键词
Gaussian Processes; Machine Learning; Physics-informed; Pi-Model; Parameter Estimation;
D O I
10.1109/PESGM52003.2023.10252495
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes a unique data-driven physics-informed approach to network line parameter estimation, where the parameters of linear continuous-time domain equation governing line dynamics are learnt by modeling the line end voltage and current signals as Gaussian processes. The proposed method allows parameter estimation along with prediction of measurement signal and associated uncertainty in a single framework. The method is tested for parameter estimation on IEEE 14-bus and 9-bus network under steady-state operating condition.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Data-Driven Abstractions via Binary-Tree Gaussian Processes for Formal Verification
    Schon, Oliver
    Naseer, Shammakh
    Wooding, Ben
    Soudjani, Sadegh
    IFAC PAPERSONLINE, 2024, 58 (11): : 115 - 122
  • [12] PARAMETER ESTIMATION AND DATA-DRIVEN METHOD FOR FOREST FIRE PREDICTION
    Li, X.
    Tang, C.
    Zhang, M.
    Zhang, S.
    Li, S.
    Wang, Y.
    Sun, S.
    Liu, J.
    MATHEMATICAL AND COMPUTATIONAL FORESTRY & NATURAL-RESOURCE SCIENCES, 2023, 15 (01): : 7 - 16
  • [13] Battery state-of-charge estimation using data-driven Gaussian process Kalman filters
    Lee, Kwang-Jae
    Lee, Won-Hyung
    Kim, Kwang-Ki K.
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [14] Artificial Neural Network-Based Data-Driven Parameter Estimation Approach: Applications in PMDC Motors
    Siddiqi, Faheem Ul Rehman
    Ahmad, Sadiq
    Akram, Tallha
    Ali, Muhammad Umair
    Zafar, Amad
    Lee, Seung Won
    MATHEMATICS, 2024, 12 (21)
  • [15] Globally Approximate Gaussian Processes for Big Data With Application to Data-Driven Metamaterials Design
    Bostanabad, Ramin
    Chan, Yu-Chin
    Wang, Liwei
    Zhu, Ping
    Chen, Wei
    JOURNAL OF MECHANICAL DESIGN, 2019, 141 (11)
  • [16] Data-driven selection and parameter estimation for DNA methylation mathematical models
    Larson, Karen
    Zagkos, Loukas
    Mc Auley, Mark
    Roberts, Jason
    Kavallaris, Nikos, I
    Matzavinos, Anastasios
    JOURNAL OF THEORETICAL BIOLOGY, 2019, 467 : 87 - 99
  • [17] Data-Driven Parameter Estimation of Steady-State Load Models
    Tushar
    Pandey, Shikhar
    Srivastava, Anurag K.
    Markham, Penn
    Bhatt, Navin
    Patel, Mahendra
    2016 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS (PEDES), 2016,
  • [18] Fast Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian Processes
    Mitrovic, Mile
    Lukashevich, Aleksandr
    Vorobev, Petr
    Terzija, Vladimir
    Maximov, Yury
    Deka, Deepjyoti
    2023 IEEE BELGRADE POWERTECH, 2023,
  • [19] Probability based remaining capacity estimation using data-driven and neural network model
    Wang, Yujie
    Yang, Duo
    Zhang, Xu
    Chen, Zonghai
    JOURNAL OF POWER SOURCES, 2016, 315 : 199 - 208
  • [20] Optical network physical layer parameter optimization for digital backpropagation using Gaussian processes
    Nevin, Josh W.
    Sillekens, Eric
    Sohanpal, Ronit
    Galdino, Lidia
    Nallaperuma, Sam
    Bayvel, Polina
    Savory, Seb J.
    DATA-CENTRIC ENGINEERING, 2023, 4 (01):