A Data-driven Technique for Network Line Parameter Estimation Using Gaussian Processes

被引:0
|
作者
Priyanka, A. G. [1 ]
Monti, Antonello [1 ]
Ponci, Ferdinanda [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Automat Complex Power Syst, Aachen, Germany
来源
2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM | 2023年
关键词
Gaussian Processes; Machine Learning; Physics-informed; Pi-Model; Parameter Estimation;
D O I
10.1109/PESGM52003.2023.10252495
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes a unique data-driven physics-informed approach to network line parameter estimation, where the parameters of linear continuous-time domain equation governing line dynamics are learnt by modeling the line end voltage and current signals as Gaussian processes. The proposed method allows parameter estimation along with prediction of measurement signal and associated uncertainty in a single framework. The method is tested for parameter estimation on IEEE 14-bus and 9-bus network under steady-state operating condition.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Data-Driven Differential Dynamic Programming Using Gaussian Processes
    Pan, Yunpeng
    Theodorou, Evangelos A.
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 4467 - 4472
  • [2] Data-driven aerodynamic analysis of structures using Gaussian Processes
    Kavrakov, Igor
    McRobie, Allan
    Morgenthal, Guido
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2022, 222
  • [3] Data-Driven Joint Topology and Line Parameter Estimation for Renewable Integration
    Yu, Jiafan
    Weng, Yang
    Rajagopal, Ram
    2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2017,
  • [4] Stochastic data-driven model predictive control using gaussian processes
    Bradford, Eric
    Imsland, Lars
    Zhang, Dongda
    Chanona, Ehecatl Antonio del Rio
    COMPUTERS & CHEMICAL ENGINEERING, 2020, 139
  • [5] Data-driven estimation of air mass using Gaussian mixture regression
    Kolewe, B.
    Haghani, A.
    Beckmann, R.
    Noack, R.
    Jeinsch, T.
    2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, : 2433 - 2438
  • [6] Scalable Gaussian Processes for Data-Driven Design Using Big Data With Categorical Factors
    Wang, Liwei
    Yerramilli, Suraj
    Iyer, Akshay
    Apley, Daniel
    Zhu, Ping
    Chen, Wei
    JOURNAL OF MECHANICAL DESIGN, 2022, 144 (02)
  • [7] Data-Driven Parameter Estimation for Models with Nonlinear Parameter Dependence
    Goel, Ankit
    Bernstein, Dennis S.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 1470 - 1475
  • [8] Data-Driven Insights into Labor Progression with Gaussian Processes
    Zhoroev, Tilekbek
    Hamilton, Emily F.
    Warrick, Philip A.
    BIOENGINEERING-BASEL, 2024, 11 (01):
  • [9] Improved Placental Parameter Estimation Using Data-Driven Bayesian Modelling
    Flouri, Dimitra
    Owen, David
    Aughwane, Rosalind
    Mufti, Nada
    Sokolska, Magdalena
    Atkinson, David
    Kendall, Giles
    Bainbridge, Alan
    Vercauteren, Tom
    David, Anna L.
    Ourselin, Sebastien
    Melbourne, Andrew
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 609 - 616
  • [10] Parameter Estimation with Data-Driven Nonparametric Likelihood Functions
    Jiang, Shixiao W.
    Harlim, John
    ENTROPY, 2019, 21 (06)