Thermophilic Moorella thermoacetica as a platform microorganism for C1 gas utilization: physiology, engineering, and applications

被引:6
作者
Jia, Dechen [1 ,2 ]
Deng, Wangshuying [1 ,2 ]
Hu, Peng [3 ]
Jiang, Weihong [1 ]
Gu, Yang [1 ]
机构
[1] Chinese Acad Sci, CAS Ctr Excellence Mol Plant Sci, Inst Plant Physiol & Ecol, CAS Key Lab Synthet Biol, Shanghai 200032, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Shanghai GTL Biotech Co Ltd, 1688 North Guoquan Rd, Shanghai 200438, Peoples R China
关键词
Moorella thermoacetica; C1; gases; Physiology and metabolism; Genetic tools; Strain improvements; ACETIC-ACID; SYNGAS FERMENTATION; ENERGY-CONSERVATION; ETHANOL-PRODUCTION; ELECTRON SINK; CLOSTRIDIUM; BACTERIUM; ACETATE; ACETOGEN; CO2;
D O I
10.1186/s40643-023-00682-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In the context of the rapid development of low-carbon economy, there has been increasing interest in utilizing naturally abundant and cost-effective one-carbon (C1) substrates for sustainable production of chemicals and fuels. Moorella thermoacetica, a model acetogenic bacterium, has attracted significant attention due to its ability to utilize carbon dioxide (CO2) and carbon monoxide (CO) via the Wood-Ljungdahl (WL) pathway, thereby showing great potential for the utilization of C1 gases. However, natural strains of M. thermoacetica are not yet fully suitable for industrial applications due to their limitations in carbon assimilation and conversion efficiency as well as limited product range. Over the past decade, progresses have been made in the development of genetic tools for M. thermoacetica, accelerating the understanding and modification of this acetogen. Here, we summarize the physiological and metabolic characteristics of M. thermoacetica and review the recent advances in engineering this bacterium. Finally, we propose the future directions for exploring the real potential of M. thermoacetica in industrial applications.
引用
收藏
页数:10
相关论文
共 92 条
  • [31] Two-stage bioconversion of carbon monoxide to biopolymers via formate as an intermediate
    Hwang, Ho Won
    Yoon, Jihee
    Min, Kyoungseon
    Kim, Min-Sik
    Kim, Seung-Jin
    Cho, Dae Haeng
    Susila, Hadiyati
    Na, Jeong-Geol
    Oh, Min-Kyu
    Kim, Yong Hwan
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 389
  • [32] Investigating Moorella thermoacetica metabolism with a genome-scale constraint-based metabolic model
    Islam, M. Ahsanul
    Zengler, Karsten
    Edwards, Elizabeth A.
    Mahadevan, Radhakrishnan
    Stephanopoulos, Gregory
    [J]. INTEGRATIVE BIOLOGY, 2015, 7 (08) : 869 - 882
  • [33] Homolactic Acid Fermentation by the Genetically Engineered Thermophilic Homoacetogen Moorella thermoacetica ATCC 39073
    Iwasaki, Yuki
    Kita, Akihisa
    Yoshida, Koichiro
    Tajima, Takahisa
    Yano, Shinichi
    Shou, Tomohiro
    Saito, Masahiro
    Kato, Junichi
    Murakami, Katsuji
    Nakashimada, Yutaka
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2017, 83 (08)
  • [34] Engineering of a functional thermostable kanamycin resistance marker for use in Moorella thermoacetica ATCC39073
    Iwasaki, Yuki
    Kita, Akihisa
    Sakai, Shinsuke
    Takaoka, Kazue
    Yano, Shinichi
    Tajima, Takahisa
    Kato, Junichi
    Nishio, Naomichi
    Murakami, Katsuji
    Nakashimada, Yutaka
    [J]. FEMS MICROBIOLOGY LETTERS, 2013, 343 (01) : 8 - 12
  • [35] Genome-wide systematic identification of methyltransferase recognition and modification patterns
    Jensen, Torbjorn Olshoj
    Tellgren-Roth, Christian
    Redl, Stephanie
    Maury, Jerome
    Jacobsen, Simo Abdessamad Baallal
    Pedersen, Lasse Ebdrup
    Nielsen, Alex Toftgaard
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [36] Metabolic Engineering of Gas-Fermenting Clostridium ljungdahlii for Efficient Co-production of Isopropanol, 3-Hydroxybutyrate, and Ethanol
    Jia, Dechen
    He, Meiyu
    Tian, Yi
    Shen, Shaohuang
    Zhu, Xianfeng
    Wang, Yonghong
    Zhuang, Yingping
    Jiang, Weihong
    Gu, Yang
    [J]. ACS SYNTHETIC BIOLOGY, 2021, 10 (10): : 2628 - 2638
  • [37] Metabolic engineering strategies to enable microbial utilization of C1 feedstocks
    Jiang, Wei
    Hernandez Villamor, David
    Peng, Huadong
    Chen, Jian
    Liu, Long
    Haritos, Victoria
    Ledesma-Amaro, Rodrigo
    [J]. NATURE CHEMICAL BIOLOGY, 2021, 17 (08) : 845 - 855
  • [38] Metabolic engineering of Moorella thermoacetica for thermophilic bioconversion of gaseous substrates to a volatile chemical
    Kato, Junya
    Takemura, Kaisei
    Kato, Setsu
    Fujii, Tatsuya
    Wada, Keisuke
    Iwasaki, Yuki
    Aoi, Yoshiteru
    Matsushika, Akinori
    Murakami, Katsuji
    Nakashimada, Yutaka
    [J]. AMB EXPRESS, 2021, 11 (01)
  • [39] Keller FA, 1984, NO Patent, Patent No. [840908L, 840908]
  • [40] EFFECTS OF CULTIVATION GAS-PHASE ON HYDROGENASE OF THE ACETOGEN CLOSTRIDIUM-THERMOACETICUM
    KELLUM, R
    DRAKE, HL
    [J]. JOURNAL OF BACTERIOLOGY, 1984, 160 (01) : 466 - 469