Membrane humidity control of proton exchange membrane fuel cell system using fractional-order PID strategy

被引:34
作者
Chen, Xi [1 ]
Wang, Chunxi [1 ]
Xu, Jianghai [2 ]
Long, Shichun [1 ]
Chai, Fasen [1 ]
Li, Wenbin [3 ]
Song, Xingxing [4 ]
Wang, Xuepeng [3 ]
Wan, Zhongmin [1 ]
机构
[1] Hunan Inst Sci & Technol, Coll Mech Engn, Yueyang 414006, Peoples R China
[2] North China Power Univ, Res Ctr Engn Thermophys, Beijing 102206, Peoples R China
[3] Hunan Inst Sci & Technol, Coll Informat & Commun Engn, Yueyang 414006, Peoples R China
[4] Sinopec Baling Co, Yueyang 414006, Peoples R China
基金
中国国家自然科学基金;
关键词
PEMFC; Power generation efficiency; Membrane humidity; Fractional-order PID; NUMERICAL-ANALYSIS; WATER-CONTENT; FLOW CHANNEL; LIQUID WATER; PEMFC; HUMIDIFICATION; PERFORMANCE; MODEL; GAS; MANAGEMENT;
D O I
10.1016/j.apenergy.2023.121182
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Dynamic humidity control is a crucial factor affecting the working performance of proton exchange membrane fuel cell (PEMFC) system. Proper membrane humidity can guarantee power generation performance, improve energy utilization efficiency, prevent irreversible degradation of the proton exchange membrane (PEM). In this paper, a dynamic control model for PEMFC humidity management is proposed, and a fractional-order PID (PI lambda D mu) control strategy is introduced to balance the membrane humidity of PEMFC. The results show that comparing with traditional PID control methods, the PI lambda D mu control shows shorter response time, lower overshoot in mem-brane humidity control, and higher power generation efficiency in PEMFC system. In addition, the performance of the PEMFC using PI lambda D mu control method at different pressure and temperature conditions is discussed. The power generation efficiency of the PEMFC under PI lambda D mu control is improved, which is 2.1 %, 3.9 % higher than that of fuzzy PID and conventional PID control method.
引用
收藏
页数:13
相关论文
共 39 条
[11]   Influences of gas relative humidity on the temperature of membrane in PEMFC with interdigitated flow field [J].
Jian, Qi-fei ;
Ma, Guang-qing ;
Qiu, Xiao-liang .
RENEWABLE ENERGY, 2014, 62 :129-136
[12]   Experimental investigation of the thermal response of open-cathode proton exchange membrane fuel cell stack [J].
Jian, Qifei ;
Huang, Bi ;
Luo, Lizhong ;
Zhao, Jing ;
Cao, Songyang ;
Huang, Zipeng .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (29) :13489-13500
[13]   Water transport in polymer electrolyte membrane fuel cells [J].
Jiao, Kui ;
Li, Xianguo .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2011, 37 (03) :221-291
[14]  
Khoeiniha M, 2012, INT J ELECTROCHEM SC, V7, P6302
[15]   A generalized numerical model for liquid water in a proton exchange membrane fuel cell with interdigitated design [J].
Le, Anh Dinh ;
Zhou, Biao .
JOURNAL OF POWER SOURCES, 2009, 193 (02) :665-683
[16]   Fault Tolerant Control Strategy applied to PEMFC water management [J].
Lebreton, Carole ;
Benne, Michel ;
Damour, Cedric ;
Yousfi-Steiner, Nadia ;
Grondin-Perez, Brigitte ;
Hissel, Daniel ;
Chabriat, Jean-Pierre .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (33) :10636-10646
[17]   Quantitative diagnosis of PEMFC membrane humidity with a vector-distance based characteristic mapping approach [J].
Li, Jianwei ;
Yan, Chonghao ;
Yang, Qingqing ;
Hao, Dong ;
Zou, Weitao ;
Gao, Lei ;
Zhao, Xuan .
APPLIED ENERGY, 2023, 335
[18]   Modeling and Control of Cathode Air Humidity for PEM Fuel Cell Systems [J].
Liu, Zhiyang ;
Chen, Jien ;
Chen, Shaoru ;
Huang, Lianghui ;
Shao, Zhigang .
IFAC PAPERSONLINE, 2017, 50 (01) :4751-4756
[19]   A liquid water management strategy for PEM fuel cell stacks [J].
Nguyen, TV ;
Knobbe, MW .
JOURNAL OF POWER SOURCES, 2003, 114 (01) :70-79
[20]   Modelling and explicit model predictive control for PEM fuel cell systems [J].
Panos, C. ;
Kouramas, K. I. ;
Georgiadis, M. C. ;
Pistikopoulos, E. N. .
CHEMICAL ENGINEERING SCIENCE, 2012, 67 (01) :15-25