Lattice rigidity in high-entropy carbide ceramics with carbon vacancies

被引:16
作者
Liu, Ji-Xuan [1 ,2 ]
Guo, Liwei [1 ]
Wu, Yue [1 ]
Qin, Yuan [1 ]
Liang, Yongcheng [1 ]
Zhang, Guo-Jun [1 ,2 ]
机构
[1] Donghua Univ, Inst Funct Mat, Coll Mat Sci & Engn, Coll Sci,State Key Lab Modificat Chem Fibers & Pol, Shanghai, Peoples R China
[2] Donghua Univ, Inst Funct Mat, Coll Mat Sci & Engn, Coll Sci,State Key Lab Modificat Chem Fibers & Pol, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon vacancy; high-entropy carbides; lattice constant; mechanical property; nonstoichiometry; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; TITANIUM CARBIDE; PHASE-STABILITY; METAL; MICROSTRUCTURE; DENSIFICATION; HARDNESS; HAFNIUM; SYSTEM;
D O I
10.1111/jace.19206
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Due to the presence of core effects of high-entropy materials, it is believed that the impact of carbon vacancy in high-entropy carbides may differ from that of transition metal monocarbides. In this work, nonstoichiometric high-entropy carbides (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-1-(x) (HEC1-x) with variable carbon vacancy concentration were fabricated by spark plasma sintering using powder mixtures of high-entropy carbide and metallic powders. Compared with the corresponding monocarbides, the decline rates of lattice constant and elastic modulus were obviously slower as carbon vacancy concentration increased, indicating a more rigid crystalline lattice in the high-entropy carbide. The valence electron number for HEC1-x ceramics with the highest hardness is 7.6, which is inconsistent with the theoretically predicted value of 8.4 for the traditional transition metal carbides. When the carbon vacancy concentration in HEC1-x ceramics is above 20%, the promoting effect of carbon vacancy on grain growth will outweigh the inhibiting effect of sluggish diffusion on grain growth, causing grains to grow quickly.
引用
收藏
页码:5612 / 5619
页数:8
相关论文
共 50 条
[41]   Mechanical and tribological performance of (TiNbTaWMo)C high-entropy ceramics in a wide temperature range [J].
Fang, Yuan ;
Zhao, Shunqiang ;
Li, Chen ;
Wu, Yan ;
Li, Jicheng ;
Fan, Hengzhong .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 24 :6312-6321
[42]   Effects of carbon doping on annealing behavior of a CoCrFeNiMn high-entropy alloy [J].
Zhang, Guopeng ;
Liu, Hepeng ;
Zheng, Kang ;
Tang, Jiaqi ;
Shi, Yunjia ;
Cai, Bin ;
Zhang, Man .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 26 :2711-2723
[43]   Formation of chromium-iron carbide by carbon diffusion in AlxCoCrFeNiCu high-entropy alloys [J].
Kivy, Mohsen Beyramali ;
Kriewall, Caitlin S. ;
Zaeem, Mohsen Asle .
MATERIALS RESEARCH LETTERS, 2018, 6 (06) :321-326
[44]   High-entropy fluorite oxides [J].
Gild, Joshua ;
Samiee, Mojtaba ;
Braun, Jeffrey L. ;
Harrington, Tyler ;
Vega, Heidy ;
Hopkins, Patrick E. ;
Vecchio, Kenneth ;
Luo, Jian .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (10) :3578-3584
[45]   Intelligent prediction and oriented design of high-hardness high-entropy ceramics [J].
Wang, Anzhe ;
Liu, Jicheng ;
Guo, Linwei ;
Qu, Kejie ;
Xie, Haishen ;
Li, Yawei ;
Du, Bin .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 36 :6015-6023
[46]   High-entropy metal carbide nanowires [J].
Ma, Mengdong ;
Hu, Xiaofei ;
Meng, Hong ;
Zhao, Zhisheng ;
Chang, Keke ;
Chu, Yanhui .
CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (04)
[47]   Method for Synthesizing a High-Entropy Carbide in an Ionic Melt [J].
Varaksin, A. V. ;
Petrova, S. A. ;
Rempel', A. A. .
RUSSIAN METALLURGY, 2023, 2023 (08) :1076-1080
[48]   Strengthening of a CrMnFeCoNi high-entropy alloy by carbide precipitation [J].
Gao, N. ;
Lu, D. H. ;
Zhao, Y. Y. ;
Liu, X. W. ;
Liu, G. H. ;
Wu, Y. ;
Liu, G. ;
Fan, Z. T. ;
Lu, Z. P. ;
George, E. P. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 792 :1028-1035
[49]   Pressureless sintering and properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics: The effect of pyrolytic carbon [J].
Yu, Duo ;
Yin, Jie ;
Zhang, Buhao ;
Liu, Xuejian ;
Reece, Michael J. ;
Liu, Wei ;
Huang, Zhengren .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (06) :3823-3831
[50]   Phase structure prediction of high-entropy carbide ceramics based on two-stage data enhancement [J].
Zhang, Huaizhi ;
Lin, Wenwen ;
Ren, Lu ;
Xiang, Wei ;
Zhang, Yuejun ;
Zhan, Lizhong .
JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2025,