High density fabrication process for single flux quantum circuits

被引:7
|
作者
Yohannes, D. [1 ]
Renzullo, M. [1 ]
Vivalda, J. [1 ]
Jacobs, A. C. [1 ]
Yu, M. [1 ]
Walter, J. [1 ]
Kirichenko, A. F. [1 ]
Vernik, I. V. [1 ]
Mukhanov, O. A. [1 ]
机构
[1] SEEQC Inc, 150 Clearbrook Rd, Elmsford, NY 10523 USA
关键词
D O I
10.1063/5.0152552
中图分类号
O59 [应用物理学];
学科分类号
摘要
We implemented, optimized, and fully tested a superconducting Josephson junction fabrication process over multiple runs tailored for integrated digital circuits that are used for control and readout of superconducting qubits operating at millikelvin temperatures. This process was optimized for highly energy efficient rapid single flux quantum (ERSFQ) circuits with critical currents reduced by a factor of similar to 10 as compared to those operated at 4.2 K. Specifically, it implemented Josephson junctions with 10 mu A unit critical current fabricated with 10 mu A/mu m(2) critical current density. In order to circumvent the substantial size increase in the SFQ circuit inductors, we employed an NbN high kinetic inductance layer with 8.5 pH/sq sheet inductance. Similarly, to maintain the small size of junction resistive shunts, we used a non-superconducting PdAu alloy with 4.0 Omega/sq sheet resistance. For integration with quantum circuits in a multi-chip module, 5 and 10 mu m height bump processes were also optimized. To keep the fabrication process in check, we developed and thoroughly tested a comprehensive process control monitor chip set.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Improvements in fabrication process for Nb-based single flux quantum circuits in Japan
    Hidaka, Mutsuo
    Nagasawa, Shuichi
    Hinode, Kenji
    Satoh, Tetsuro
    IEICE TRANSACTIONS ON ELECTRONICS, 2008, E91C (03) : 318 - 324
  • [2] Characterization of a fabrication process for the integration of superconducting qubits and rapid-single-flux-quantum circuits
    Castellano, Maria Gabriella
    Gronberg, Leif
    Carelli, Pasquale
    Chiarello, Fabio
    Cosmelli, Carlo
    Leoni, Roberto
    Poletto, Stefano
    Torrioli, Guido
    Hassel, Juha
    Helisto, Panu
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2006, 19 (08): : 860 - 864
  • [3] Current status and future prospect of the Nb-based fabrication process for single flux quantum circuits
    Hidaka, M
    Nagasawa, S
    Satoh, T
    Hinode, K
    Kitagawa, Y
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2006, 19 (03): : S138 - S142
  • [4] Boolean single flux quantum circuits
    Okabe, Y
    Teh, CK
    IEICE TRANSACTIONS ON ELECTRONICS, 2001, E84C (01) : 9 - 14
  • [5] Fabrication of high-temperature superconductor single-flux-quantum circuits using a multilayer structure with a smooth surface
    Wakana, H.
    Adachi, S.
    Tsubone, K.
    Tarutani, Y.
    Kamitani, Ai
    Nakayama, K.
    Ishimaru, Y.
    Tanabe, K.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2006, 19 (05): : S312 - S315
  • [6] Splitter Trees in Single Flux Quantum Circuits
    Jabbari, Tahereh
    Krylov, Gleb
    Kawa, Jamil
    Friedman, Eby G.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2021, 31 (05)
  • [7] Design and Fabrication of Low-Power Single-Flux-Quantum Circuits Toward Quantum Bit Control
    Tanaka, Masamitsu
    Kitagawa, Yoshihiro
    Satoh, Tetsuro
    Yamamoto, Tsuyoshi
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2023, 33 (05)
  • [8] A high frequency test bench for rapid single-flux-quantum circuits
    Engseth, H.
    Intiso, S.
    Rafique, M. R.
    Tolkacheva, E.
    Kidiyarova-Shevchenko, A.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2006, 19 (05): : S376 - S380
  • [9] Measurement of the error rate of single flux quantum circuits with high temperature superconductors
    Ruck, B
    Chong, Y
    Dittmann, R
    Engelhardt, A
    Oelze, B
    Sodtke, E
    Siegel, M
    Booij, WE
    Blamire, MG
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1999, 9 (02) : 3850 - 3853
  • [10] Integration of Optical Waveguides With Single Flux Quantum Circuits
    Arita, Yoshiki
    Yoshikawa, Nobuyuki
    Toshihiko, Baba
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2011, 21 (03) : 839 - 842