Patterns and stability of coupled multi-stable nonlinear oscillators

被引:1
作者
Bel, G. [1 ,2 ,3 ]
Alexandrov, B. S. [4 ]
Bishop, A. R. [4 ]
Rasmussen, K. O. [4 ]
机构
[1] Ben Gurion Univ Negev, Blaustein Inst Desert Res, Dept Environm Phys, Sede Boqer Campus, IL-8499000 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Dept Phys, Sede Boqer Campus, IL-8499000 Beer Sheva, Israel
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies CNLS, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
基金
美国国家卫生研究院;
关键词
Helmholtz-Duffing; Coupled oscillators; Instability; Multi-stability; Patterns; NOISE;
D O I
10.1016/j.chaos.2022.112999
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nonlinear isolated and coupled oscillators are extensively studied as prototypical nonlinear dynamics models. Much attention has been devoted to oscillator synchronization or the lack thereof. Here, we study the synchronization and stability of coupled driven-damped Helmholtz-Duffing oscillators in bi-stability regimes. We find that despite the fact that the system parameters and the driving force are identical, the stability of the two states to spatially non-uniform perturbations is very different. Moreover, the final stable states, resulting from these spatial perturbations, are not solely dictated by the wavelength of the perturbing mode and take different spatial configurations in terms of the coupled oscillator phases.
引用
收藏
页数:6
相关论文
共 27 条
[1]   Chimera states for coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :174102-1
[2]   Double-period breathers in a driven and damped lattice [J].
Bel, G. ;
Alexandrov, B. S. ;
Bishop, A. R. ;
Rasmussen, K. O. .
PHYSICAL REVIEW E, 2018, 98 (06)
[3]  
Doedel E. J., 1981, Congr. Numer, V30, P265
[4]   Generation of Localized Modes in an Electrical Lattice Using Subharmonic Driving [J].
English, L. Q. ;
Palmero, F. ;
Candiani, P. ;
Cuevas, J. ;
Carretero-Gonzalez, R. ;
Kevrekidis, P. G. ;
Sievers, A. J. .
PHYSICAL REVIEW LETTERS, 2012, 108 (08)
[5]   Discrete breathers [J].
Flach, S ;
Willis, CR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05) :181-264
[6]   Self-consistent method and steady states of second-order oscillators [J].
Gao, Jian ;
Efstathiou, Konstantinos .
PHYSICAL REVIEW E, 2018, 98 (04)
[7]   NONLINEAR NEURAL NETWORKS - PRINCIPLES, MECHANISMS, AND ARCHITECTURES [J].
GROSSBERG, S .
NEURAL NETWORKS, 1988, 1 (01) :17-61
[8]  
Hänggi P, 2002, CHEMPHYSCHEM, V3, P285, DOI 10.1002/1439-7641(20020315)3:3<285::AID-CPHC285>3.0.CO
[9]  
2-A
[10]   Bifurcation structure of two coupled periodically driven double-well Duffing oscillators [J].
Kenfack, A .
CHAOS SOLITONS & FRACTALS, 2003, 15 (02) :205-218