A Criterion for Nonsolvability of a Finite Group and Recognition of Direct Squares of Simple Groups

被引:2
|
作者
Wang, Zh. [1 ]
Vasil'ev, A. V. [1 ,2 ]
Grechkoseeva, M. A. [2 ]
Zhurtov, A. Kh. [3 ]
机构
[1] Hainan Univ, Sch Sci, Haikou, Hainan, Peoples R China
[2] Sobolev Inst Math, Novosibirsk, Russia
[3] Kabardino Balkarian State Univ, Nalchik, Russia
基金
中国国家自然科学基金;
关键词
criterion of nonsolvability; simple exceptional group; element orders; recognition by spectrum; ELEMENT; ORDERS;
D O I
10.1007/s10469-023-09697-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The spectrum omega(G) of a finite group G is the set of orders of its elements. The following sufficient criterion of nonsolvability is proved: if, among the prime divisors of the order of a group G, there are four different primes such that omega(G) contains all their pairwise products but not a product of any three of these numbers, then G is nonsolvable. Using this result, we show that for q > 8 and q not equal 32, the direct square Sz(q) x Sz(q) of the simple exceptional Suzuki group Sz(q) is uniquely characterized by its spectrum in the class of finite groups, while for Sz(32) x Sz(32), there are exactly four finite groups with the same spectrum.
引用
收藏
页码:288 / 300
页数:13
相关论文
共 50 条
  • [1] A Criterion for Nonsolvability of a Finite Group and Recognition of Direct Squares of Simple Groups
    Zh. Wang
    A. V. Vasil’ev
    M. A. Grechkoseeva
    A. Kh. Zhurtov
    Algebra and Logic, 2022, 61 : 288 - 300
  • [2] On recognition of direct powers of finite simple linear groups by spectrum
    Yang, Nanying
    Gorshkov, Ilya
    Staroletov, Alexey
    Vasil'ev, Andrey V.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (06) : 2699 - 2714
  • [3] On recognition of direct powers of finite simple linear groups by spectrum
    Nanying Yang
    Ilya Gorshkov
    Alexey Staroletov
    Andrey V. Vasil’ev
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2699 - 2714
  • [4] On recognition of the direct squares of the simple groups with abelian Sylow 2-subgroups
    Li, Tao
    Moghaddamfar, Ali Reza
    Vasil'ev, Andrey V.
    Wang, Zhigang
    RICERCHE DI MATEMATICA, 2024, 74 (1) : 61 - 78
  • [5] The graph of atomic divisors and recognition of finite simple groups
    Buturlakin, Alexander A.
    Vasil'ev, Audrey V.
    JOURNAL OF ALGEBRA, 2019, 537 : 478 - 502
  • [6] An adjacency criterion for the prime graph of a finite simple group
    Vasiliev A.V.
    Vdovin E.P.
    Algebra and Logic, 2005, 44 (6) : 381 - 406
  • [7] Finite Groups Isospectral to Simple Groups
    Grechkoseeva, Maria A.
    Mazurov, Victor D.
    Shi, Wujie
    Vasil'ev, Andrey V.
    Yang, Nanying
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 11 (02) : 169 - 194
  • [8] A nilpotency criterion for finite groups
    Tarnauceanu, M.
    ACTA MATHEMATICA HUNGARICA, 2018, 155 (02) : 499 - 501
  • [9] On the structure of finite groups isospectral to finite simple groups
    Grechkoseeva, Mariya A.
    Vasil'ev, Andrey V.
    JOURNAL OF GROUP THEORY, 2015, 18 (05) : 741 - 759
  • [10] Another criterion for solvability of finite groups
    Herzog, Marcel
    Longobardi, Patrizia
    Maj, Mercede
    JOURNAL OF ALGEBRA, 2022, 597 : 1 - 23